GLASS FIBER REINFORCED POLYMER BARS AS THE TOP MAT REINFORCEMENT FOR BRIDGE DECKS

by

J. Michael DeFreese

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE
in
CIVIL ENGINEERING

APPROVED:

Carin L. Roberts-Wollmann, Chairperson

_________________________ _________________________
Thomas E. Cousins John J. Lesko

December, 2001
Blacksburg, Virginia

Keywords: Fiber reinforced Polymer (FRP) bars, Beam End Bond Tests, FRP Tensile Tests, Bond of FRP Bars
FIBER REINFORCED POLYMER BARS IN THE TOP MAT OF BRIDGE DECKS

by

J. Michael DeFreese

(ABSTRACT)

The primary objective of this research was to experimentally investigate material and bond properties of three different types of fiber reinforced polymer (FRP) bars, and determine their effect on the design of a bridge deck using FRP bars as the top mat of reinforcement. The properties evaluated include the tensile strength, modulus of elasticity, bond behavior, and maximum bond stress. The experimental program included 47 tensile tests and 42 beam end bond tests performed with FRP bars. Tensile strength of the bars from the tensile testing ranged from 529 MPa to 859 MPa. The average modulus, taken from all the testing, for each type of bar was found to range from 40 GPa to 43.7 GPa. The maximum bond stress from the beam end bond tests ranged from 9.17 MPa to 25 MPa. From the tests, design values were found in areas where the properties investigated were related. These design values include design tensile strength, design modulus of elasticity, bond coefficient for deflection calculations, bond coefficient for crack width calculations, and development length. The results and conclusions address design concerns of the different types of FRP bars as applied in the top mat of reinforcement of a bridge deck.

A secondary objective was to evaluate the disparity in results between direct pullout tests, and beam end bond tests. Results from the experimentally performed beam end bond test were compared to previous literature involving the direct pullout tests. Results from the performed beam end bond tests were higher than all of the literature using direct pullout results. No recommendations were given on the disparity between the two test methods.
Acknowledgements

I want to express my sincere gratitude to Dr. Carin Roberts-Wollmann, my advisor and chairperson, who has tirelessly guided me throughout the duration of my research and writing. I would also like to thank the other members of my committee, Dr. Thomas E. Cousins, and Dr. John J. Lesko, for their participation in my project. Other individuals whose contributions towards my research are greatly appreciated are Brett Farmer, Dennis Huffman, Denson Graham, and all of my other friends here who have given me their assistance with my work.

I am also very grateful to my friends and family who have given encouragement, and support during my time here. Special thanks are given to Thad Chapman, and Steve Anderson, two of my best friends who have helped me get through school. Most importantly, I would like to thank my Mother, my Father, and my Step Mother for all of their encouragement, motivation, and support. Without them, I would not have been able to reach my goals. Finally, I would like to thank Jennifer Hathcock, who has inspired me to live the best life that I can, and whose love has given me all I could ever ask for.
Table of Contents

Chapter 1 Introduction 1
1.1 – Background 1
1.1.1 – Material Properties 1
1.1.2 – Bond Test Comparison 2
1.2 – Objectives 3
1.2.1 – Objective One 3
1.2.2 – Objective Two 5

Chapter 2 Literature Review 6
2.1 – Direct pullout bond tests of FRP reinforcement 6
2.2 – Beam End Bond Tests 11
2.3 – Summary 15

Chapter 3 Methods and Materials 19
3.1 – Tensile Tests 19
3.1.1 – Introduction 19
3.1.2 – Materials 19
3.1.3 – Specimen Preparation 20
3.1.4 – Universal Test Machine (UTM) Preparation 24
3.1.5 – Tensile Test Procedures 24
3.2 – Bond Tests 26
3.2.1 – Introductions 26
3.2.2 – Test Specimen Preparations 26
3.2.3 – Test Frame and Tension Rig 32
3.2.4 – Bond Test Procedures 40

Chapter 4 Results and Discussion 44
4.1 – Tensile Tests 44
4.1.1 – Introduction 44
4.1.2 – Modulus 44
4.1.3 – Stress-Strain Diagrams 49
4.1.4 – Average Ultimate Tensile Strength & Rupture Strain 51
List of Figures

Figure 3.1: Examples of the three manufacturers’ bars. 20
Figure 3.2: Typical end anchor. 23
Figure 3.3: Typical tensile test setup. 25
Figure 3.4: Typical specimen dimension (elevation). 27
Figure 3.5: Typical specimen dimension (cross-section). 27
Figure 3.6: Typical gang form dimensions (plan). 28
Figure 3.7: Typical gang form dimensions (elevation view). 28
Figure 3.8: Typical gang form dimensions (elevation view, section A-A). 29
Figure 3.9: Shear Reinforcement cross-sections. 30
Figure 3.10: Test block loading. 33
Figure 3.11: Test frame and equipment. 34
Figure 3.12: Anchor plate for the tension rig. 35
Figure 3.13: Washer plate for the tension rig. 36
Figure 3.14: Plan view of the ram plate for the tension rig. 37
Figure 3.15: Elevation view of the ram plate for the tension rig. 37
Figure 3.16: Loaded end bar rig and LVDTs. 39
Figure 3.17: Free end LVDT. 40
Figure 4.1: Typical stress-strain curve. 50
Figure 4.2: Typical load vs. live end slip plot. 57
Figure 4.3: Typical load vs. free end slip plot. 58
Figure 5.1: Typical load vs. live end slip curves for all manufacturers’ bars. 72
Figure 5.2: Post bond test pictures of three manufacturers’ bars. 74
List of Tables

Table 2.1: Summary of literature reviewed for direct pullout test method 16
Table 2.2: Summary of literature reviewed for beam end test method. 17
Table 3.1: Length and diameter specifications. 21
Table 3.2: GFRP bar lengths for bond tests. 31
Table 3.3: Bar loading rates. 42
Table 4.1: Hughes Brothers Inc. modulus summary. 46
Table 4.2: Marshall Corporation modulus summary. 47
Table 4.3: Pultrall modulus summary. 48
Table 4.4: Tensile strength data by manufacturer and bar size. 52
Table 4.5: Calculated rupture strain by bar size and manufacturer. 54
Table 4.6: Bond stresses, and averages for all bond tests. 60
Table 4.7: Embedment length comparison. 61
Table 5.1: Compiled tensile strength data. 64
Table 5.2: Tensile modulus data for all manufacturers by bar size. 68
Table 5.3: A development length comparison using equation 5.5, and 5.6. 77
Table 5.4: Development length calculations using published data. 79