Integrated Model to Plan Advanced Public Transportation Systems

by

Chulho Bang

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Civil Engineering

APPROVED:

Antonio A. Trani, Chairman

Donald R. Drew, Ph.D. Michael W. Van Aerde, Ph.D.

Sheldon H. Jacobson, Ph.D. Wei H. Lin, Ph.D.

August, 1998
Blacksburg, VA 24061

Key Words: AVL, Evaluation, GIS, ITS, Logit Model, Lowry Model, Simulation, Systems Dynamics, Transit
The primary objective of this study is to develop an integrated public transportation planning framework to evaluate and plan Advanced Public Transportation Systems (APTS). With this purpose, a systems approach point of view is adopted to study the influence of new APTS technology in supply and demand transit variables. In this project the Systems Dynamics methodology is adopted to track the dynamic behavior of model variables and feedback loops forming among them. The proposed framework is illustrated in a case study involving automated vehicle location systems (AVL) applied to a small transit community.

The proposed approach follows the same steps of the Systems Dynamics method; First, identify some key variables which are not only susceptible to AVL technology but also affect the supply-demand relationship of a bus transit environment. Second, trace and simplify the causal relationships of the variables considering impacts of facility supply changes to passenger demand responses and vice versa. To accomplish this, four detailed sub-models representing parts of the transit system are developed and combined under the Systems Dynamics methodology point of view. These sub-models are: 1) demography, 2) urban transportation planning, 3) bus operations, and 4) evaluation. Finally, to validate the model procedure, the model is applied to a case study. This study attempts to encompass as many as possible factors around a bus transit system environment which can be impacted by new APTS technology to illustrate the use of the proposed framework. Some of these factors include: 1) Demographic characteristics; 2) urban or social activity of the study area and 3) changes to transportation facilities. The case study illustrates how the physical characteristics of the transit systems such as traffic demand, traffic conditions along the transit route, route layout, and bus performance can be affected by the new technology.

Since APTS impacts are time dependent a continuous multi-loop simulation technique is adopted to track dynamic changes of all model variables. The analysis of the transit system is carried over a 20-year life cycle to illustrate the long term dynamics of the feedback structures inherent in the model.
ACKNOWLEDGEMENT

My dissertation was made possible through the work and effort of many. I would like to express my deepest thanks to all of those that assisted me throughout my academic career and made the completion of this dissertation possible.

I sincerely wish to express my gratitude to my advisor Dr. Antonio Trani for his support, guidance, patience and encouragement throughout the course of this research. Also, I am greatly indebted to him for his critical review of the manuscript of my dissertation.

I would like to thank my committee members, Dr. Donald Drew, Dr. Michael Van Aerde, Dr. Sheldon Jacobson, and Dr. Wei Lin for serving on my committee, and providing me with excellent course instruction during graduate years at Virginia Tech.

It is my greatest pleasure to dedicate this small achievement to my parents. Throughout my education I totally have relied on the love and support of them. I would also like to thank my brothers and sisters-in-law. I am truly blessed in that they have always supported me in every way.

Finally, I would like to extend my deepest thanks to many friends for their support and understanding throughout the Virginia Tech life.
Table of Contents

Abstract

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Research Objectives and Scope</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Research Approach</td>
<td>4</td>
</tr>
<tr>
<td>2. Review of Transit Technologies and Current Research</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Intelligent Transportation Systems (ITS)</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Automatic Vehicle Location Systems (AVL)</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Technologies in AVL</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 User Services of AVL</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Issues Related to AVL System Implementation Evaluation</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1 Benefits of the AVL Systems</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 Cost of the AVL Systems</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Review of Current Research on APTS Evaluation</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1 Technical Evaluation</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2 Empirical Evaluation</td>
<td>25</td>
</tr>
<tr>
<td>2.4.3 Model-Based Evaluation</td>
<td>27</td>
</tr>
<tr>
<td>2.4.4 Subjective Evaluation</td>
<td>28</td>
</tr>
<tr>
<td>3. Methodology</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Modeling Concept</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Systems Approach</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1 Modeling of System Dynamics</td>
<td>35</td>
</tr>
<tr>
<td>3.2.2 Model Structure</td>
<td>36</td>
</tr>
<tr>
<td>3.2.2.1 Sub-Model A; Population Allocation Analysis</td>
<td>39</td>
</tr>
<tr>
<td>3.2.2.2 Sub-Model B; Urban Transportation Planning Process</td>
<td>40</td>
</tr>
<tr>
<td>3.2.2.3 Sub-Model C; Bus Operations Analysis</td>
<td>40</td>
</tr>
</tbody>
</table>
3.2.2.4 Integration of UTPP and Bus Operation Model

41

3.2.2.5 Evaluation Analysis

43

3.3 Selection of the Measures of Effectiveness (MOEs)

44

4.0 Modeling the System

47

4.1 Population Allocation Sub-Model

47

4.2 Modeling the Urban Transportation Planning Process

49

4.2.1 Modeling the Trip Generation Process

51

4.2.2 Modeling the Trip Distribution Process

53

4.2.3 Modeling the Mode Choice Process

55

4.2.4 Modeling the Traffic Assignment Process

58

4.3 Simulation Model for the Bus Operation

58

4.3.1 Development of ITPM

61

4.3.1.1 Loop A: Bus Performance Analysis

65

4.3.1.2 Loop B: Highway Traffic Conditions and Bus Demand Analysis

67

4.3.1.3 Loop D: Bus Operation Simulation

77

4.3.1.4 Microscopic Bus Performance Simulation

83

4.3.2 Estimation of Transit MOEs

85

5.0 Case Study: Blacksburg Transit AVL System

87

5.1 Condition of the Study Area

87

5.2 Evaluating present BT performance

92

5.2.1 BT Operation Regularity Assessment

95

5.3 Model Building

96

5.3.1 Population allocation

98

5.3.2 Trip Generation and Trip Distribution

101

5.3.3 Assignment of BT Demand to each Bus Stop

104

5.3.4 Mode Choice

104

5.3.4.1 Estimation of Modal Choice Model

104

5.3.4.2 Survey Analysis

106

5.3.4.3 Calibration of Modal Choice Model

108
5.3.4.4 Sensitivity Analysis Evaluation ... 110
5.3.5 Bus Operation Simulation Model for Blacksburg Transit 112
5.4 Model Validation .. 114
5.5 Scenario Analysis .. 117
5.6 Simulation Output Evaluation ... 119
 5.6.1 Auto Travel Time and Street LOS ... 119
 5.6.2 Probability of BT Demand and Number of Passenger 122
 5.6.3 BT In-vehicle Travel Time ... 124
 5.6.4 BT Fuel Consumption ... 125
5.7 Cost-Benefit Analysis ... 126

6.0 Conclusions ... 128
 6.1 Review .. 128
 6.2 Future work ... 129

References ... 131

Appendices ... 137

Appendix A: Bus Stop Geographical Data 137
Appendix B: Input Data Source ... 151
Appendix C: Mode Choice Analysis Data ... 155
Appendix D: Programming Sources for the ITPM 168
Appendix E: Output Analysis of the ITPM 206
Appendix F: Evaluation Analysis Resource 221

VITA ... 229
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>ITS User Services</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The Deployment Plan of CVO Research and Development</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Implementation of North American AVL Systems (1996)</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Benefit/Costs of an AVL System</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Cost Savings After AVL</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Improvement of Operational Efficiency After AVL</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Sample AVL Cost of Transit Systems in U.S.A.</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Strengths and Weaknesses of Technical Evaluation</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Strengths and Weaknesses of Empirical Evaluation</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Strengths and Weaknesses of Model-Based Evaluation</td>
<td>28</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Strengths and Weaknesses of Subjective Evaluation</td>
<td>29</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Example of Quantitative MOEs</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Evaluation Criteria in Transit Operations</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Factors that Influence Transit Capacity</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Bus Specifications used in the Bus Performance Analysis Sub-Model</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Output of Traffic Assignment Calibration in BT Network</td>
<td>73</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Critical Gap Acceptance for Buses at Unsignalized Intersections</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Bus Dwell Times at Bus Stops in Selected Urban Areas (TRB, 1985)</td>
<td>82</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>BT Demand for Each Route.(1997; Weekday, fall/spring semesters)</td>
<td>90</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Description of the BT Main Street (Route #1) Sections</td>
<td>91</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Main Street BT Operation Schedule (Monday-Friday)</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Conditions of Blacksburg Transit Operations (Main Street Route)</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Scheduled Vs. Actual Average Operation Time for Main Street Route (sec.)</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Comparison Between Suggested Planning Guidelines for Bus Operation and BT Case.</td>
<td>94</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Projected Average Fuel Economy by Vehicle Type</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>BT Regularity Index Results</td>
<td>97</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Population Projection for Town of Blacksburg</td>
<td>98</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>Blacksburg Zonal System</td>
<td>100</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Blacksburg Socio-Economic Data (1997)</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 5.12 Blacksburg Zonal Population / Employment. 101
Table 5.13 Predicted Zonal Population Allocation in Blacksburg. 101
Table 5.14 Estimated Trip Productions for Main Street Route. 102
Table 5.15 Estimated Trip Attractions for Main Street Route. 102
Table 5.16 Distribution Table of BT Traffic. .. 103
Table 5.17 BT Trip Distribution Pattern among Zones served by Main Street Route. 103
Table 5.18 BT Demand on Each Bus Stop (Partial Table). 104
Table 5.19 Schedule of BT Survey. ... 106
Table 5.20 Basic Statistics of Survey Data. ... 107
Table 5.21 Student Auto Ownership Estimation by Mode (unit : person). 107
Table 5.22 Validation of the Mode Choice Model (unit : person). 109
Table 5.23 Comparison of Mode Selection by Students between Before and After AVL Implementation (Estimate). .. 110
Table 5.24 Sensitivity of BT demand by LOS and Relative Travel Time. 111
Table 5.25 Network Geometric and Traffic Conditions of each Section. 112
Table 5.26 Characteristics and Accuracy of Model Calibration. 113
Table 5.27 Simple Comparison between Model Output and Actual Data. 114
Table 5.28 Statistical Test Output of Simulation Model (Comparison 1). 116
Table 5.29 Statistical Test Output of Simulation Model (Comparison 2). 116
Table 5.30 Conditions of Each Scenario. ... 118
Table 5.31 Relationships of O121perational Condition and AVL Market Penetration for Each Scenario ... 119
Table 5.32 Comparison of Street LOS, Auto Travel Time for Each Scenarios 120
Table 5.33 Comparison of Probability of Selecting BT 122
Table 5.34 Comparison of In-Vehicle Travel Time for Each Scenario 124
Table 5.35 Comparison of Fuel Consumption for Each Scenario 126
Table 5.36 Operation Times and Fuel Consumptions of All Scenarios. 127
List of Figures

Figure 2.1 An Example of GPS Functional Concept ... 12
Figure 3.1 Basic Modeling Concept of the ITPM .. 33
Figure 3.2 Example of the Three Complementary Modeling Used in Systems Dynamics . 37
Figure 3.3 Modeling Procedure to Evaluate the Impact of AVL Technology in the ITPM . 38
Figure 3.4 Relationship Between Activities and Transportation Facilities 39
Figure 3.5 Integration of UTPP and Bus Operation Simulation Model in ITPM 42
Figure 4.1 Flowchart of Lowry Model ... 48
Figure 4.2 Schematic Illustration of the Four-Steps in UTPP 50
Figure 4.3 Trip Generation Inputs and Outputs ... 51
Figure 4.4 An Example of Cross-Classification Trip Analysis 53
Figure 4.5 Trip Distribution Inputs and Outputs .. 54
Figure 4.6 Modal Choice Alternatives in the UTPP ... 55
Figure 4.7 The Binomial Logit Model ... 56
Figure 4.8 Flow Chart to Estimate Some MOEs for Bus Operation 60
Figure 4.9 Causal Relationships in the Microscopic Bus Simulation Model 62
Figure 4.10 Conceptual Framework of Bus operation Simulation (Stage I) 63
Figure 4.11 Framework of Bus operation Simulation (Stage II) 64
Figure 4.12 Iterative Procedure Between Travel Time and Traffic Assignment Process 71
Figure 4.13 Output of Travel-time-restrained Network Assignment 74
Figure 5.1 Overview of the AVL System in Blacksburg Transit 88
Figure 5.2 Location Map of Blacksburg ... 89
Figure 5.3 Route Map of Main Street (Route 1) .. 89
Figure 5.4 Graphical Dedication of BT Regularity Index ... 97
Figure 5.5 ITPM Modeling and Model Validation Process Using Actual Data 99
Figure 5.6 Correlation of Four Data Sets and the Simulation Output 115
Figure 5.7 Relationships of Operational Condition and AVL Market Penetration for Each Scenario 118
Figure 5.8 Trends of Auto Travel Time for Each Scenario. 121
Figure 5.9 Trends of Street LOS for Each Scenario. 121
Figure 5.10 Trends of BT Demand Probability. 123
Figure 5.11 Trends of BT Total Passenger for Each Scenario. 123
Figure 5.12 Trends of In-Vehicle Travel Time for Each Scenario. 125
Figure 5.13 Fuel Consumption for Each Scenario. 126