Contents

Chapter 1: Introduction

1.1. Background ... 1
1.2. Problem statement .. 3
1.3. Research objective .. 5
1.4. Thesis outline .. 5

Chapter 2: Literature review

2.1. Review of queuing network based manufacturing models 6
2.2. Review of lot sizing and lead-time effect on MRP system 8
2.3. Review of planned lead-time estimation methods 10

Chapter 3: Approach

3.1. General assumptions .. 13
3.2. Dynamic programming based optimization routine 13
3.2.1. General approach ... 14
3.2.2. Principle of optimality .. 16
3.3. Queuing network theory based manufacturing system model 19
3.3.1. Basic elements of queuing model 19
3.3.2. Analysis of approximate GI/G/m queues 20
3.3.2.1. Basic GI/G/1 open queue network and decomposition analysis 21
3.3.2.2. Notations .. 23
3.3.2.3. Mean arrival rates .. 23
3.3.2.4. Mean values of GI/G/1 queuing system 24
3.3.2.5. Output process of GI/G/1 queue system 25
3.3.2.6. Traffic and traffic variability equations 25
3.3.3. GI/G/m queuing model with interference 27
3.3.4. Summary of queuing model discussion 27
3.3.5. MPX... 28
3.3.5.1 Theory behind MPX... 28
3.3.5.2. Input parameters of a MPX model....................... 29
3.3.5.3. Limitations of modeling in MPX......................... 29

Chapter 4: Methodology... 31

4.1. Overcoming the MPX limitations..................................... 33
4.1.1. Unlimited buffer capacity... 33
4.1.2. Introducing time phasing among lots........................... 33
4.1.3. Discussion on using steady state average values 37
4.1.3.1. Determining the arrival rate of a lot......................... 38
4.1.3.2. MPX steady state values vs. simulation results.......... 40
4.1.3.3. Unbiased nature of steady state values................. 43
4.2. Assumptions on lot-sizing problem formulation............... 47
4.3. Notation definition... 48
4.4. Problem formulation... 49
4.5. Determination of lot release dates................................... 50
4.6. Lead time estimation in the MPX model......................... 52
4.7. Concept of early starting .. 54
4.8. Algorithm... 56
4.9. Algorithm execution.. 60
4.10. Approximating MPX results.. 61
4.11. Limitations of SLLS algorithm 62

Chapter 5: Modeling a manufacturing system in MPX............. 63

5.1. Input menu bar.. 63
5.1.1. General data ... 63
5.1.2. Labor data... 64
5.1.3. Equipment data... 65
5.1.4. Product data... 66
Chapter 6: Simulation model and methodology

6.1. Modeling logic
6.2. Discussion on different ARENA template modules
6.3. Discussion of the statistical issues
6.4. Estimation procedure and statistical issues
6.4.1. Computation

Chapter 7: Experimental design

7.1. Wagner-Whitin (WW) algorithm
7.2. Lead-time estimation method
7.3. Experiment methodology
7.4. Design of experiments
7.5. Performance measures

Chapter 8: Experiment results and discussion

8.1. Parameter setting
8.2. Results
8.3. Results discussion
8.3.1. Results summary
8.3.2. Effect of number of workstations that parts visit on the percentage of lead-time error
8.3.3. Effect of number of workstations that parts visit on WIP cost
8.4. Effect of safety factor K
8.5. Tractability

Chapter 9: Conclusion

9.1 Future Research

Bibliography
Appendix A: Experiment 7 Results ... 110
Vita ... 135
List of Figures

Figure 1: Schematic diagram of the proposed approach ... 12
Figure 2: General schematic diagram of dynamic programming 15
Figure 3: Schematic diagram of modified dynamic programming
 for lot-sizing model .. 16
Figure 4: Node representation of the multi period lot-sizing problem 17
Figure 5: Elementary GI/G/1 queue station ... 22
Figure 6: Description of the simultaneous lot size and lead-time setting (SLLS)
 methodology .. 32
Figure 7: Display of time phasing concept in MPX ... 35
Figure 8: Display of “DELAY” concept in MPX for lot2 ... 35
Figure 9: Display of “DELAY” concept in MPX for lot1 ... 36
Figure 10: Display of “production period” parameter in MPX 40
Figure 11: Parts routing 1 ... 41
Figure 12: Parts routing 2 ... 44
Figure 13: Node representation of the two-period lot-sizing problem 44
Figure 14: Description of cumulative time concept .. 52
Figure 15: Concept of early starting .. 55
Figure 16: Display of “General data” submenu in MPX ... 64
Figure 17: Display of “Labor” submenu in MPX ... 65
Figure 18: Display of “Equipment” submenu in MPX ... 66
Figure 19: Display of “Product” submenu in MPX ... 67
Figure 20: Display of “Output” menu bar in MPX ... 68
Figure 21: High-level description of simulation model ... 71
Figure 22: Description of lot n operation-1 module ... 72
Figure 23: Description of lot n operation-2 module ... 72
Figure 24: Description of lot n record module .. 73
Figure 25: Description of experiment methodology................................. 80
Figure 26: Routing of parts visiting two workstations................................. 84
Figure 27: Routing of parts visiting four workstations................................. 84
Figure 28: Routing of parts visiting eight workstations............................... 85
Figure 29: Number of workstations that parts visit vs. percentage of lead-time error for the conventional method .. 94
Figure 30: Number of workstations that parts visit vs. percentage of lead-time error for the SLLS method ... 95
Figure 31: Comparison of WIP cost with respect to number of workstations that parts visit for demand values at level one ... 96
Figure 32: Comparison of WIP cost with respect to number of workstations that parts visit for demand values at level two ... 97
Figure 33: Comparison of WIP cost with respect to number of workstations that parts visit for demand values at level three 98
Figure 34: Comparison of WIP cost with respect to number of workstations that parts visit for demand values at level four 98
Figure 35: Comparison of WIP cost with respect to number of workstations that parts visit for demand values at level five 99
Figure 36: Safety factor vs. lead-time error estimated for the conventional method .. 101
Figure 37: Safety factor vs. total cost of the conventional production plan......... 102
Figure 38: Safety factor vs. Number of tardy jobs caused by the conventional production plan .. 103
Figure 39: The determination of simulation length for Experiment 7............... 134
List of Tables

Table 1: Comparison between MPX and simulation results .. 42
Table 2: Set of demand values and lot size.. 45
Table 3: Comparison of the decisions made by using both the steady state average values and the simulation results... 46
Table 4: Description of demand values allotted for each i^{th} level 82
Table 5: Description of number of machines allotted for each j^{th} level..................... 82
Table 6: Arrangement for a Two-Factor Factorial Design .. 83
Table 7: General arrangement of parameters for different experiments 88
Table 8: Comparison of lot size estimated by conventional and SLLS methods............. 89
Table 9: Comparison of PLT estimated by conventional and SLLS methods................. 90
Table 10: Comparison of percentage of lead-time error .. 91
Table 11: Comparison of total production cost .. 92
Table 12: Summary of results ... 93
Table 13: Experiment 7-Conventional - Wagner-Whitin Algorithm............................. 110
Table 14: Experiment 7-Conventional - Wagner-Whitin algorithm results.................... 111
Table 15: Experiment 7-Conventional – Lead estimation (K=2)................................. 111
Table 16: Experiment 7-Conventional – Lot size and PLT .. 111
Table 17: Experiment 7-SLLS - PLT updating.. 112
Table 18: Experiment 7-SLLS - Lot sizing results... 112
Table 19: Experiment 7-SLLS – PLT results... 113
Table 20: Experiment 7-Conventional – % lead-time error estimation......................... 113
Table 21: Experiment 7-Conventional – Holding cost & late penalty........................... 114
Table 22: Experiment 7-Conventional – WIP cost & setup cost.................................... 114
Table 23: Experiment 7-SLLS - % lead-time error estimation...................................... 115
Table 24: Experiment 7-SLLS – Holding cost & late penalty.. 115
Table 25: Experiment 7-SLLS – WIP cost & setup cost.........................116