MONOTONIC AND CYCLIC PERFORMANCE
OF LONG SHEAR WALLS WITH OPENINGS

by

Andrew C. Johnson

Dr. James D. Dolan, Chairman

Civil Engineering

(ABSTRACT)

The effect of door and window openings on long timber framed shear walls was the subject of this thesis. Four different wall configurations containing various openings and one control wall with no openings were tested to examine ultimate load capacity and stiffness. All walls were forty feet in length and contained tie-down anchorage at the extreme ends of the wall only. Two replications of the five wall configurations were built. Each of the five wall configurations was tested using a: 1) monotonic displacement pattern and 2) sequential phased displacement pattern. A better understanding of the effect of monotonic and cyclic loading (and the relationship between the two loading types) on ultimate load capacity and stiffness for a given wall configuration were examined. To efficiently design shear walls, the effect of openings on shear wall performance must be known. This thesis adds to previous work on shear walls with openings to provide valuable information for future use.

Results from this investigation are intended to provide useful information regarding performance of long shear walls with openings. Data concerning capacity, drift, elastic stiffness, and ductility are presented. Two methods of capacity prediction of shear walls with openings are examined. Sugiyama (1994) provided an empirical equation for prediction of load resistance that has been applied to capacity and is the basis for the perforated shear wall method. This thesis further validates his work to full scale long shear walls. A new method for capacity prediction was developed by the author and is also presented.
DEDICATION

This thesis is dedicated to my mom, who I love with all my heart. Thank you, Mom.
ACKNOWLEDGEMENTS

I would like to thank Dan Dolan and Joe Loferski for their guidance in tackling an overwhelming project. In addition, I would like to thank all of the sponsors that contributed to this project. Without their support, this project would not have been possible. In particular, I would like to express my gratitude to Phil Line of the American Forest & Paper Association.
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

1.1 BACKGROUND ..1
1.2 OBJECTIVES ...1
1.3 DESIGN CODES ...2
1.4 SUGIYAMA ..2
1.5 LIMITATIONS OF STUDY ...2
1.6 DOCUMENT ORGANIZATION ...3

CHAPTER 2. LITERATURE SURVEY

2.1 INTRODUCTION ..4
2.2 BACKGROUND ...4
2.3 MODELING AND DESIGN APPROACHES ..5
2.4 CYCLIC CONNECTION TESTS ..8
2.5 SHEAR WALL TESTS ...8
 2.5.1 Racking Performance ...9
 2.5.2 Dynamic Performance ..9
 2.5.3 Narrow Shear Walls ...11
 2.5.4 Openings ..11
 2.5.5 Adhesives ..11
2.6 WALL ASSEMBLY AND BUILDING TESTS12
2.7 SUMMARY ..13

CHAPTER 3. TEST SPECIMENS AND PROCEDURES

3.1 INTRODUCTION ..14
3.2 SPECIMENS ...14
3.3 MATERIALS ..16
3.4 WALL ORIENTATION ...18
3.5 DATA ACQUISITION SYSTEM ..20
3.6 MONOTONIC SHEAR WALL TEST PROCEDURE20
3.7 SEQUENTIAL PHASED DISPLACEMENT (SPD) SHEAR WALL TEST PROCEDURE20
3.8 SUMMARY ..22

CHAPTER 4. MONOTONIC SHEAR WALL TESTS

4.1 INTRODUCTION ..23
4.2 PROPERTY DEFINITIONS ...23
 4.2.1 Load-Displacement Curves ...23
 4.2.2 Equivalent Elastic-Plastic Curve ..23
4.3 MONOTONIC TEST RESULTS ..25
 4.3.1 Strength and deflection ...26
 4.3.2 Elastic Stiffness ...28
6.2 PARAMETERS .. 85
6.2.1 Strength .. 85
6.2.2 Yield Load ... 86
6.2.3 Load at Failure ... 88
6.2.4 Drift Comparison ... 89
6.2.5 Elastic Stiffness .. 93
6.2.6 Ductility ... 95
6.3 CONCLUSIONS .. 96
6.4 SUMMARY ... 97

CHAPTER 7. SUMMARY AND CONCLUSIONS ... 98
7.1 SUMMARY AND CONCLUSIONS ... 98
7.2 FUTURE RESEARCH ... 99

REFERENCES .. 101

APPENDIX A .. 109
APPENDIX B .. 113
APPENDIX C .. 124
APPENDIX D .. 128
APPENDIX E .. 131
APPENDIX F .. 134
APPENDIX G .. 137
VITA .. 140
LIST OF FIGURES

FIGURE 3. 1- WALL CONFIGURATIONS EXAMINED .. 15
FIGURE 3. 2- SHEAR WALL SHEATHING AREA RATIO VARIABLES 16
FIGURE 3. 3- WALL ATTACHMENT TO TEST FIXTURE .. 19
FIGURE 3. 4- SENSOR LOCATIONS ON PLAN VIEW OF WALL SPECIMEN 19
FIGURE 3. 5- SEQUENTIAL PHASED DISPLACEMENT (SPD) LOADING SEQUENCE 21
FIGURE 4. 1 - TYPICAL LOAD-DRIFT CURVE FOR MONOTONIC SHEAR WALL TEST 24
FIGURE 4. 2- TYPICAL EQUIVALENT ELASTIC-PLASTIC CURVE 24
FIGURE 4. 3- MONOTONIC LOAD-DRIFT CURVES FOR THE FIVE SHEAR WALL
 CONFIGURATIONS EXAMINED ... 25
FIGURE 4. 4- MONOTONIC CAPACITY OF THE FIVE SHEAR WALL CONFIGURATIONS
 EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO 27
FIGURE 4. 5- MONOTONIC ELASTIC STIFFNESS OF THE FIVE SHEAR WALL
 CONFIGURATIONS EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO 29
FIGURE 4. 6- CORRELATION OF MONOTONIC SHEAR LOAD RATIO AND STIFFNESS RATIO
 FOR THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED 30
FIGURE 4. 7- SLIP BETWEEN TENSION SIDE TIE-DOWN AND END STUDS FOR WALLS A, B
 AND D PLOTTED AGAINST LATERAL LOAD RESISTANCE 32
FIGURE 4. 8- SLIP BETWEEN TENSION SIDE TIE-DOWN ANCHOR AND END STUDS FOR
 WALLS A, B AND D PLOTTED AGAINST DRIFT .. 33
FIGURE 4. 9- TENSION SIDE TIE-DOWN ANCHOR BOLT LOAD RESISTANCE OF WALL C
 PLOTTED AGAINST DRIFT .. 34
FIGURE 4. 10- ACTUAL MONOTONIC SHEAR LOAD RATIOS AT CAPACITY OF THE FIVE
 SHEAR WALL CONFIGURATIONS EXAMINED AND SUGIYAMA’S SHEAR LOAD RATIO
 PREDICTION EQUATION PLOTTED AGAINST SHEATHING AREA RATIO 40
FIGURE 4. 11- NATURAL LOG OF MONOTONIC CAPACITY OF THE FIVE SHEAR WALL
 CONFIGURATIONS EXAMINED AND THE NATURAL LOG METHOD PREDICTION
 EQUATION PLOTTED AGAINST SHEATHING AREA RATIO 44
FIGURE 4. 12- NATURAL LOG OF MONOTONIC ELASTIC STIFFNESS OF THE FIVE SHEAR
 WALL CONFIGURATIONS EXAMINED, AND THE NATURAL LOG METHOD PREDICTION
 EQUATION PLOTTED AGAINST SHEATHING AREA RATIO 45
FIGURE 5. 1- ILLUSTRATION OF DISPLACEMENT IN ONE PHASE OF SPD LOADING 48
FIGURE 5. 2- TYPICAL INITIAL AND STABILIZED LOAD-ENVELOPE CURVES 49
FIGURE 5. 3- TYPICAL EQUIVALENT ELASTIC-PLASTIC CURVE 50
FIGURE 5. 4- TYPICAL HYSTERESIS LOOP FOR TIMBER SHEAR WALL DURING SPD
 LOADING ... 51
FIGURE 5. 5- INITIAL CYCLE LOAD ENVELOPE CURVES FOR THE FIVE SHEAR WALL
 CONFIGURATIONS EXAMINED ... 52
FIGURE 5. 6- STABILIZED CYCLE LOAD ENVELOPE CURVES FOR THE FIVE SHEAR WALL
 CONFIGURATIONS EXAMINED ... 53
FIGURE 5. 26 - NATURAL LOG OF INITIAL ELASTIC STIFFNESS OF WALLS A - D, AND NATURAL LOG METHOD PREDICTION EQUATION PLOTTED AGAINST SHEATHING AREA RATIO ... 83
FIGURE 5. 27 - NATURAL LOG OF STABILIZED ELASTIC STIFFNESS OF WALLS A - D, AND NATURAL LOG METHOD PREDICTION EQUATION PLOTTED AGAINST SHEATHING AREA RATIO ... 84
FIGURE 6. 1- MONOTONIC AND CYCLIC CAPACITY OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO...... 86
FIGURE 6. 2- RATIO OF CYCLIC TO MONOTONIC CAPACITY OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO 88
FIGURE 6. 3- RATIO OF CYCLIC TO MONOTONIC LOAD RESISTANCE AT YIELD OF FIVE WALL CONFIGURATIONS EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO .. 89
FIGURE 6. 4- MONOTONIC AND CYCLIC DRIFT AT CAPACITY OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED ... 91
FIGURE 6. 5- MONOTONIC AND CYCLIC DRIFT AT YIELD OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED ... 92
FIGURE 6. 6- MONOTONIC AND CYCLIC DRIFT AT FAILURE OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED ... 93
FIGURE 6. 7- MONOTONIC AND CYCLIC ELASTIC STIFFNESS OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO 94
FIGURE 6. 8- RATIO OF CYCLIC TO MONOTONIC DUCTILITY OF THE FIVE SHEAR WALL CONFIGURATIONS EXAMINED PLOTTED AGAINST SHEATHING AREA RATIO 96
LIST OF TABLES

Table 3.1: Opening sizes for the five shear wall configurations examined .. 14
Table 3.2: Wall materials and construction data for shear wall specimens 17
Table 3.3: Fastener schedule used for shear wall specimens 18
Table 4.1: Monotonic data of five shear wall configurations examined 26
Table 4.2: Monotonic end stud displacement and tie-down slip at capacity for the five shear wall configurations examined 32
Table 4.3: Comparison of monotonic capacity of the five shear wall configurations examined with ultimate design capacity 38
Table 4.4: Comparison of actual load resistances at capacity and drifts of 0.32 in., 0.96 in., and 1.6 in. for the five shear wall configurations examined with load resistance’s determined from Sugiyama’s shear load ratio equations 39
Table 4.5: Comparison of monotonic elastic stiffness of the five shear wall configurations examined with elastic stiffness determined from Sugiyama’s shear load ratio equations 41
Table 4.6: Comparison of monotonic capacity of the five shear wall configurations examined with capacity determined from natural log method 43
Table 4.7: Comparison of monotonic elastic stiffness of the five shear wall configurations examined with elastic stiffness determined from the natural log method 47
Table 5.1: Initial cycle data of the five shear wall configurations examined 53
Table 5.2: Stabilized cycle data of the five shear wall configurations examined 54
Table 5.3: Initial and stabilized peak hysteretic and potential energy of the five shear wall configurations examined 63
Table 5.4: Initial and stabilized equivalent viscous damping ratio (EVDR) at or near ΔYIELD, ΔMAX, and ΔFAILURE for the five shear wall configurations examined 65
Table 5.5: Initial cycle end stud displacement between positive and negative peak drifts at ΔMAX and ΔFAILURE for the five shear wall configurations examined 67
Table 5.6: Initial cycle slip of tie-down anchors relative to end studs for 69
Table 5.7: Comparison of initial and stabilized capacity of the five shear wall configurations examined with ultimate design capacity 72
Table 5.8: Comparison of initial capacity of the five shear wall configurations examined with Sugiyama’s predicted capacities 75
Table 5.9: Comparison of stabilized capacity of the five shear wall configurations examined with Sugiyama’s predicted capacities 76
Table 5.10: Comparison of initial cycle elastic stiffness of the five shear wall configurations examined with elastic stiffness determined from Sugiyama

Table 5.11: Comparison of stabilized cycle elastic stiffness of the five shear wall configurations examined with elastic stiffness determined from Sugiyama

Table 5.12: Comparison of initial and stabilized capacity of the five shear wall configurations examined with natural log method predicted capacities

Table 5.13: Comparison of initial and stabilized capacity of the five shear wall configurations examined with natural log method predicted capacities

Table 6.1: Comparison of monotonic and cyclic parameters of the five shear wall configurations examined

Table 6.2: Comparison of monotonic and cyclic drifts at yield, capacity, and failure of the five shear wall configurations examined

Table 6.3: Comparison of monotonic and cyclic elastic stiffness of the five shear wall configurations examined

Table 6.4: Comparison of monotonic and cyclic ductility of the five shear wall configurations examined