Optimal Vehicle Path Generator

Using Optimization Methods

by

Peeroon (Pete) Ramanata
Mehdi Ahmadian, Chairman
Pushkin Kachroo, Co-Chairman
Mechanical Engineering

This research explores the idea of developing an optimal path generator that can be used in conjunction with a feedback steering controller to automate track testing experiment. This study specifically concentrates on applying optimization concepts to generate paths that meet two separate objective functions; minimum time and maximum tire forces.

A three-degree-of freedom vehicle model is used to approximate the handling dynamics of the vehicle. Inputs into the vehicle model are steering angle and longitudinal force at the tire. These two variables approximate two requirements that are essential in operating a vehicle. The Third order Runge-Kutta integration routine is used to integrate vehicle dynamics equations of motion. The Optimization Toolbox of Matlab is used to evaluate the optimization algorithm. The vehicle is constrained with a series of conditions, includes, a travel within the boundaries of the track, traction force limitations at the tire, vehicle speed, and steering.

The simulation results show that the optimization applied to vehicle dynamics can be useful in designing an automated track testing system. The optimal path generator can be used to develop meaningful test paths on existing test tracks. This study can be used to generate an accelerated tire wear test path, perform parametric study of suspension geometry design using vehicle dynamics handling test data, and to increase repeatability in generating track testing results.
Acknowledgments

First and foremost, I would like to say thank you to Dr. Mehdi Ahmadian for his help, support and guidance over the past two years. With his encouragement, I am able to successfully accomplish my goals in completing my Master's degree and also to get my foot in the door in the field of vehicle dynamics. He has taught me how to become successful in many aspects of life. I am very grateful to have had him as an advisor.

I would also like to thank Dr. Pushkin Kachroo for his expertise in vehicle dynamic modeling (X-Y plane). His guidance helped me clarify the scope of this research and focus on the objective. I would like to thank Dr. Douglas J. Nelson for his time in serving on my committee. I also owe Dr. Eugene M. Cliff tremendous thanks for getting me over the hurdle in optimal controls.

Special thanks are due to The Goodyear Tire and Rubber Company for their help in providing me with tire data. Specifically I would like to thank Steve Rohweder who not only initiated the idea for this thesis but also did the leg work in sending me the tire data. Without his help, this thesis would not have been completed.

I would like to thank the Department of Mechanical Engineering for providing financial funding towards my graduate studies.

I would like to thank AVDL members, Chet Dhruna, Matt Doyle, Chris Pare, Brian Reichert, and Jaime Venezia for making the years in graduate school the most memorable and fun. I would like to thank Xubin Song for his help in answering Matlab questions, guiding me to the resources I needed for my simulation and for giving me unrestricted computer time. I also would like to thank Michael Kaiser for letting me use his computer and office in time of need.

I would like to thank my family, Phaiboone, Poonsup and Art Ramanata for their love and support throughout the years at Virginia Tech. Finally, I would like to say thank you to Susan for her patience, understanding, sacrifice, and love over the years.
Contents

1.0 Introduction .. 1
 1.1 Motivation for Studying Vehicle Dynamics ... 1
 1.2 Motivation for this Research ...
 1.3 Research Objective ... 3
 1.4 Literature Review .. 4
 1.4.1 Minimum Time Optimal Path .. 5
 1.4.2 Vehicle and Tire Model .. 6
 1.4.3 Autonomous Vehicles .. 7
 1.5 Thesis Outline ... 8

2.0 Vehicle Dynamics Modeling ... 10
 2.1 Vehicle Axis System ... 10
 2.2 Vehicle Models ... 13
 2.3 Three-Degree-of-Freedom Vehicle Model Derivation ... 16
 2.3.1 Equations of Motion ... 16
 2.3.2 Front Tire Slip Angle Derivation .. 18
 2.3.3 Rear Tire Slip Angle Derivation ... 19
 2.4 Longitudinal (Traction/Braking) Force .. 20
 2.5 Segel Lateral Force Model .. 21
 2.6 Friction Ellipse Concept ... 22
 2.7 Friction Circle Concept .. 23
 2.8 State Space Representation ... 24
 2.9 Vehicle Model Verification ... 25
 2.9.1 Vehicle Steering Symmetry Validation: Step Input .. 29
 2.9.2 Vehicle Steering Symmetry Validation: Saw-Tooth Input 34
 2.9.3 Vehicle Steering Symmetry Validation: Sine Wave Input 39

3.0 Path Optimization .. 45
 3.1 Optimization Routine Formulation .. 45
 3.2 Matlab Optimization Toolbox Function .. 46
3.3 Optimal Vehicle Path Simulation ... 47
3.4 Computation Time ... 47
3.5 Variable Definitions .. 48
 3.5.1 State Variables ... 48
 3.5.1.1 State Variable Constraints .. 48
 3.5.2 System Input Variables .. 50
 3.5.2.1 System Input Variables Constraints ... 50
 3.5.3 Path Constraint ... 53
3.6 Cost Function ... 57
 3.6.1 Time Minimization Cost Function ... 57
 3.6.2 Tire Force Maximization Cost Function .. 59

4.0 Optimal Path Simulation ... 62
4.1 Simulation Test Tracks ... 62
4.2 Optimal Path Simulation ... 63
4.3 Simulation Cases ... 64
4.4 Minimum Time Simulation ... 65
 4.4.1 Two-Section Test Track ... 65
 4.4.1.1 Step Input ... 66
 4.4.1.1.1 Case No. 1: Minimum Time, \(V_\eta = 10 \text{ m/s} \), Step Input 66
 4.4.1.1.2 Case No. 2: Minimum Time, \(V_\eta = 10 \text{ m/s} \), Step Input 75
 4.4.1.2 Sine Wave Input ... 83
 4.4.1.2.1 Case No. 3: Minimum Time, \(V_\eta = 10 \text{ m/s} \), Sine Input 84
 4.4.2 Three-Section Test Track ... 91
 4.4.2.1.1 Case No. 4: Minimum Time, \(V_\eta = 10 \text{ m/s} \), Step Input 92
4.5 Maximum Front Tire Forces Simulation ... 100
 4.5.1.1 Case No. 5: Maximum Front Tire Forces, \(V_\eta = 10 \text{ m/s} \), Step Input 100
 4.5.1.2 Case No. 6: Maximum Front Tire Forces, \(V_\eta = 10 \text{ m/s} \), Step Input 109
 4.5.1.3 Case No. 7: Maximum Front Tire Forces, \(V_\eta = 10 \text{ m/s} \), Sine Input 118
 4.5.1.4 Case No. 8: Maximum Front Tire Forces, \(V_\eta = 10 \text{ m/s} \), Step Input 126
5.0 Conclusion .. 134
5.1 Conclusion ... 134
5.2 Practical Use .. 134
5.3 Improvement on Overall Approach ... 135
5.4 Future Research .. 136
 5.4.1 Using Optimal Controls Method .. 136
 5.4.2 Applying Optimal Path ... 136
 5.4.3 Using Different Vehicle and Tire Models ... 136
 5.4.4 Parallel Processing Computation .. 137
References ... 138
Vita ... 141
List of Figures

Figure 1.1 Automated Vehicle Handling Track Testing Outline .. 4
Figure 1.2 Literature Review Keyword Search Diagram .. 5
Figure 2.1 Vehicle Axis System ... 10
Figure 2.2 Walking Analogy to Tire Slip Angles .. 11
Figure 2.3 SAE Tire Axis System ... 12
Figure 2.4 Body-Slip Angle ... 13
Figure 2.5 Two-Degree-of-Freedom Model .. 14
Figure 2.6 Three-Degree-of-Freedom Model ... 14
Figure 2.7 Rotational Degree of Freedom at Wheel ... 15
Figure 2.8 Eight-Degree-of-Freedom Model ... 15
Figure 2.9 Three-Degree-of-Freedom Model Used in this Research 16
Figure 2.10 Front Tire Slip Angle .. 18
Figure 2.11 Rear Tire Slip Angle .. 19
Figure 2.12 Friction Ellipse Diagram .. 23
Figure 2.13 Friction Circle Diagram ... 24
Figure 2.14 Smith Vehicle Response with Saw-Tooth Input ... 26
Figure 2.15 Three-Degree-of-Freedom Model Response Subjected to Saw-Tooth Input ... 26
Figure 2.16 Smith Vehicle Response with Step Input ... 27
Figure 2.17 Three-Degree-of-Freedom Model Response Subjected to Step Input 27
Figure 2.18 System Inputs with Step Steering Angle for Cases A, B, and C 30
Figure 2.19 Results for Case A ... 31
Figure 2.20 Results for Case B ... 32
Figure 2.21 Results for Case C ... 33
Figure 2.22 System Inputs with Step Steering Angle for Cases D, E, and F 35
Figure 2.23 Results for Case D ... 36
Figure 2.24 Results for Case E ... 37
Figure 2.25 Results for Case F ... 38
Figure 2.26 System Inputs with Step Steering Angle for Cases G, H, and I 40
Figure 2.27 Results for Case G ... 41
Figure 2.28 Results for Case H ... 42
Figure 2.29 Results for Case I ... 43
Figure 3.1 Optimal Vehicle Path Simulation Program Flow Chart 47
Figure 3.2 Path Constraint Definition for a Generic Road 53
Figure 3.3 Path Constraint Function .. 55
Figure 3.4 Path Constraint Function Derivation ... 56
Figure 4.1 A Modular Test Track Section .. 62
Figure 4.2 Simulation Test Tracks .. 63
Figure 4.3 Two-Section Test Track ... 65
Figure 4.4 Case No. 1: Optimal System Input ... 68
Figure 4.5 Case No. 1: Optimal Vehicle Path .. 70
Figure 4.6 Case No. 1: Lateral Position, Velocity, & Acceleration 71
Figure 4.7 Case No. 1: Longitudinal Velocity, Yaw Angle & Velocity 72
Figure 4.8 Case No. 1: Lateral Force, Slip Angle, & Speed Constraint 73
Figure 4.9 Case No. 1: Path Constraint, Steering Angle Constraint, & Longitudinal Force Constraint ... 74
Figure 4.10 Case No. 2: Optimal System Input ... 76
Figure 4.11 Case No. 2: Optimal Vehicle Path ... 78
Figure 4.12 Case No. 2: Lateral Position, Velocity, & Acceleration 79
Figure 4.13 Case No. 2: Longitudinal Velocity, Yaw Angle & Velocity 80
Figure 4.14 Case No. 2: Lateral Force, Slip Angle, & Speed Constraint 81
Figure 4.15 Case No. 2: Path Constraint, Steering Angle Constraint, & Longitudinal Force Constraint ... 82
Figure 4.16 Case No. 3: Optimal System Input ... 85
Figure 4.17 Case No. 3: Optimal Vehicle Path ... 86
Figure 4.18 Case No. 3: Lateral Position, Velocity, & Acceleration 87
Figure 4.19 Case No. 3: Longitudinal Velocity, Yaw Angle & Velocity 88
Figure 4.20 Case No. 3: Lateral Force, Slip Angle, & Speed Constraint 89
Figure 4.21 Case No. 3: Path Constraint, Steering Angle Constraint, & Longitudinal Force Constraint 90
Figure 4.22 Three-Section Test Track .. 91
Figure 4.23 Case No. 4: Optimal System Input 92
Figure 4.24 Case No. 4: Optimal Vehicle Path 95
Figure 4.25 Case No. 4: Lateral Position, Velocity, & Acceleration 96
Figure 4.26 Case No. 4: Longitudinal Velocity, Yaw Angle & Velocity 97
Figure 4.27 Case No. 4: Lateral Force, Slip Angle, & Speed Constraint 98
Figure 4.28 Case No. 4: Path Constraint, Steering Angle Constraint, & Longitudinal Force Constraint 99
Figure 4.29 Case No. 5: Optimal System Input 101
Figure 4.30 Case No. 5: Optimal Vehicle Path 103
Figure 4.31 Case No. 5: Lateral Position, Velocity, & Acceleration 104
Figure 4.32 Case No. 5: Longitudinal Velocity, Yaw Angle & Velocity 105
Figure 4.33 Case No. 5: Lateral Force, Slip Angle, & Speed Constraint 106
Figure 4.34 Case No. 5: Path Constraint, Steering Angle Constraint, & Longitudinal Force Constraint 107
Figure 4.35 Case No. 5: Maximum Tire Force Objective Variable, Resultant Tire Force 108
Figure 4.36 Case No. 6: Optimal System Input 109
Figure 4.37 Case No. 6: Optimal Vehicle Path 112
Figure 4.38 Case No. 6: Lateral Position, Velocity, & Acceleration 113
Figure 4.39 Case No. 6: Longitudinal Velocity, Yaw Angle & Velocity 114
Figure 4.40 Case No. 6: Lateral Force, Slip Angle, & Speed Constraint 115
Figure 4.41 Case No. 6: Path Constraint, Steering Angle Constraint, & Longitudinal Force Constraint 116
Figure 4.42 Case No. 6: Maximum Tire Force Objective Variable, Resultant Tire Force 117
Figure 4.43 Case No. 7: Optimal System Input 119
Figure 4.44 Case No. 7: Optimal Vehicle Path 120
Figure 4.45 Case No. 7: Lateral Position, Velocity, & Acceleration 121
Figure 4.46 Case No. 7: Longitudinal Velocity, Yaw Angle & Velocity 122
Figure 4.47 Case No. 7: Lateral Force, Slip Angle, & Speed Constraint 123
Figure 4.48 Case No. 7: Path Constraint, Steering Angle Constraint, & Longitudinal Force
Constraint .. 124
Figure 4.49 Case No. 7: Maximum Tire Force Objective Variable, Resultant Tire Force 125
Figure 4.50 Case No. 8: Optimal System Input .. 127
Figure 4.51 Case No. 8: Optimal Vehicle Path .. 128
Figure 4.52 Case No. 8: Lateral Position, Velocity, & Acceleration 129
Figure 4.53 Case No. 8: Longitudinal Velocity, Yaw Angle & Velocity 130
Figure 4.54 Case No. 8: Lateral Force, Slip Angle, & Speed Constraint 131
Figure 4.55 Case No. 8: Path Constraint, Steering Angle Constraint, & Longitudinal Force
Constraint .. 132
Figure 4.56 Case No. 8: Maximum Tire Force Objective Variable, Resultant Tire Force 133
List of Tables

Table 2.1 Vehicle Parameter Used in Simulation Study .. 17
Table 2.2 Vehicle Model Validation Test Cases .. 29
Table 3.1 Weighting Factors for Minimum Time Cost Function ... 59
Table 3.2 Weighting Factors for Maximum Tire Force Cost Function 61
Table 4.1 Simulation Cases ... 64
Table 4.2 Two-Section Test Track Specifications .. 65
Table 4.3 Values of Initial System Inputs for Step Input/Two-Section Track 66
Table 4.4 Case No. 1 Initial Values of Step/Two-Section Track Simulation 67
Table 4.5 Case No. 1 Optimal Values of Step/Two-Section Track Simulation 69
Table 4.6 Case No. 2 Initial Values of Step/Two-Section Track Simulation 75
Table 4.7 Case No. 2 Optimal Values of Step/Two-Section Track Simulation 77
Table 4.8 Values of Initial System Inputs for Sine Input/Two-Section Track 83
Table 4.9 Case No. 3 Initial Values of Sine/Two-Section Track Simulation 84
Table 4.10 Case No. 3 Optimal Values of Sine/Two-Section Track Simulation 85
Table 4.11 Three-Section Test Track Specifications ... 91
Table 4.12 Case No. 4 Initial Values of Step/Three-Section Track Simulation 92
Table 4.13 Case No. 4 Optimal Values of Step/Three-Section Track Simulation 94
Table 4.14 Case No. 5 Initial Values of Step/Two-Section Track Simulation 100
Table 4.15 Case No. 5 Optimal Values of Step/Two-Section Track Simulation 102
Table 4.16 Case No. 6 Initial Values of Step/Two-Section Track Simulation 109
Table 4.17 Case No. 6 Optimal Values of Step/Two-Section Track Simulation 111
Table 4.18 Case No. 7 Initial Values of Sine/Two-Section Track Simulation 118
Table 4.19 Case No. 7 Optimal Values of Sine/Two-Section Track Simulation 119
Table 4.20 Case No. 8 Initial Values of Step/Three-Section Track Simulation 126
Table 4.21 Case No. 8 Optimal Values of Step/Three-Section Track Simulation 127