CHIRAL SEPARATIONS ON HPLC DERIVATIZED POLYSACCHARIDE CSPs:
TEMPERATURE, MOBILE PHASE AND CHIRAL RECOGNITION MECHANISM
STUDIES

Maria Elena Y. Cabusas

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

Harold M. McNair, Chairman
Mark R. Anderson
James O. Glanville
Gary L. Long
Larry T. Taylor
Yuri V. Kazakevich

April, 1998
Blacksburg, Virginia

Keywords: Chiral Separation, Profens, Chiral Stationary Phases

Copyright 1998, Maria Elena Y. Cabusas
Direct chiral separations of the non-steroidal drugs of 2-methylarylpropionic acids (profens) on the chiral stationary phases (CSPs) of amyllose tris(3,5-dimethylphenyl-carbamate), Chiralpak AD, and cellulose tris(3,5-dimethylphenylcarbamate), Chiralcel OD, were investigated. Chiralpak AD and Chiralcel OD are CSPs coated on silica gel and have the same type of constituents. However, they have different higher order structures arising from their different arrangements of the glucose units, i.e., the former has an α-(1,4)-D-glucose linkage and the latter has a β-(1,4)-D-glucose linkage. The orders of optimum enantioselectivity of racemic acids were reversed on the two CSPs which demonstrated that the enantioseparating abilities of these CSPs are complementary. This phenomenon also confirmed that the chiral recognition abilities of both CSPs were dependent on their higher order structures.

Mechanisms for retention and chiral recognition for the separation of racemic 2-methylarylpropionic acids on Chiralpak AD and Chiralcel OD were explored. In depth studies of the dependence of retention and enantioselectivity on temperature and mobile phase compositions were made. The thermodynamic parameters, the differences in free energy, enthalpy, and entropy of association between enantiomers and the CSP were evaluated.

The results indicated that the retention of racemic acids on both CSPs is mainly dependent on the hydrogen bonding interaction between the acid proton of the carboxyl
moiety of the analyte and the carbonyl oxygen of the carbamate moiety of the CSP. The chiral recognition mechanism for Chiralpak AD involves: (1) the formation of transient diastereomeric analyte-CSP complexes through hydrogen bonding interactions between the carboxyl and the carbamate moieties of the acid and CSP, respectively; (2) stabilization of these complexes by insertion of the aromatic portion of the analytes into the chiral cavities of the CSP, as well as π-π, dipole-dipole, and additional hydrogen bonding interactions between analyte and CSP; and (3) chiral discrimination between enantiomer analytes arising from the additional hydrogen bond between analyte and CSP.

For Chiralcel OD, the chiral recognition mechanisms involve: (1) the formation of transient diastereomeric analyte-CSP complexes through hydrogen bonding interactions between the carboxyl and the carbamate moieties of the acid and CSP, respectively; (2) stabilization of these complexes by insertion of the aromatic portion of the analytes into the chiral cavities of the CSP, as well as π-π and dipole-dipole interactions between analyte and CSP; and (3) chiral discrimination due to: (a) the difference in the steric fit of enantiomers into the chiral cavity of the CSP (entropy controlled); and (b) dipole-dipole or π-π interactions between enantiomer analytes and CSP (enthalpy controlled).

Chromatographic and quantitative thermodynamic data showed that there are at least two different chiral recognition mechanisms for Chiralcel OD. One mechanism was characterized by negative values for the enthalpy and entropy differences of the association between enantiomers and CSP that classifies the enantioseparation to be enthalpy controlled. This behavior was exhibited by racemic 2-methylarylpropionic acids with fused rings that were favorably separated at low temperatures. The other mechanism was associated with positive values for the enthalpy and entropy differences of the association between enantiomers and CSP, and the enantioseparation is said to be entropy controlled. The analytes with “free” phenyl moieties favored high temperatures for their enantioseparations.

Both studies on the effects of temperature and mobile phase composition also indicated that the higher order structures of CSPs influence their chiral recognition abilities.
ACKNOWLEDGMENTS

My sincerest gratitude to

Prof. Harold McNair for his encouragement, guidance and support, specially at the last phase of this research. Prof. McNair also facilitated the financial support towards the end of my stay at the University.

Dr. Yuri Kazakevich for his continuing encouragement and valuable opinions for my work.

Dr. James Glanville for his encouragement and helpful comments on the thermodynamic aspect of my research.

Dr. Glanville also facilitated my return to the University after the car accident.

Dr. Stephanie Mabic and Sonya Palmer for the verification of the organic chemistry part of this research.

Dr. Scott Stauffer and Brett Kite for the computer assistance in determining the physical properties of analytes.

Members of the Chromatography Research Group: Dr. Xiao-wei Sun, Stephanie Armstrong, Troy Wilkerson, Dr. Ivana Bonaccorsi, Gail Reed, Dr. Yuwen Wang, and Mark Schneider who made life in the laboratory bearable.

Everyone who helped me come back after the car accident including Dr. Joseph Philipps, Dr. Dolly Tiongco, Yonael Teklu, Sophie Hon, Paratransit Personnel, Jeanine Eddleton, Unnamed Friends in the Chemistry Department, and Others.

Dr. Bernard La Berge, Prof. John Ballweg, and Dr. Titos Quibuyen for making possible my graduate studies at the University.

Jasco Incorporated for loaning the HPLC System.

J.T. Baker for their generosity in donating the chiral columns.

My parents, brothers, and sisters for their encouragement.

With all your encouragement and support this research was made possible.
TABLE OF CONTENTS

Abstract ii
Acknowledgments v
Table of Contents vi
List of Figures viii
List of Tables xi

Chapter I. Introduction 1
 1.1 Importance of Chiral Separation 1
 1.2 Non-steroidal Antiinflammatory Drugs of 2-Arylmethyl-
 propionic Acids 3
 1.3 Research Objectives 7

Chapter II. Historical 9
 2.1 Chromatographic Methods 10
 2.2 Temperature Dependence of Chiral Separation 23
 2.3 Mobile Phase Studies (Polar Modifiers) 29
 2.4 Chiral Recognition Mechanism Studies 32

Chapter III. Theory 38
 3.1 Diastereomeric Analyte-CSP Complexes 38
 3.2 Thermodynamics of Enantioseparation 45
 3.3 Enthalpy-Entropy Compensation 51
 3.4 Generalized Chiral Separation Mechanism 53
 3.5 Chiral Recognition Mechanisms for Derivatized Amylose
 and Derivatized Cellulose CSPs 55

Chapter IV. Experimental 61
 4.1 Instrumentation 61
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Structures of 2-arylmethylpropionic acids</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Structures of derivatized polysaccharide CSPs</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Type 1 CSP: N-(3,5-dinitrobenzoyl)phenylglycine</td>
<td>15</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Structure of cellulose</td>
<td>16</td>
</tr>
<tr>
<td>Figure 5a</td>
<td>Structure of β-cyclodextrin</td>
<td>20</td>
</tr>
<tr>
<td>Figure 5b</td>
<td>Schematic diagram of cyclodextrin CSP forming an inclusion complex</td>
<td>20</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Categories of chirality</td>
<td>39</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Three Point Model</td>
<td>40</td>
</tr>
<tr>
<td>Figure 8a</td>
<td>Analyte-CSP interactions: π-π interactions and dipole-dipole stacking</td>
<td>42</td>
</tr>
<tr>
<td>Figure 8b</td>
<td>Analyte-CSP interactions: inclusion and hydrogen bonding</td>
<td>42</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Van’t Hoff plot, $R \ln \alpha$ vs. $1/T$</td>
<td>49</td>
</tr>
<tr>
<td>Figure 10a</td>
<td>Van’t Hoff plot of $R \ln k$ vs. $1/T$ (enthalpy controlled enantioseparation)</td>
<td>50</td>
</tr>
<tr>
<td>Figure 10b</td>
<td>Van’t Hoff plot of $R \ln k$ vs. $1/T$ (entropy controlled enantioseparation)</td>
<td>50</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Adsorption-desorption equilibria</td>
<td>54</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Structure of cellulose trisphenylcarbamate</td>
<td>56</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Fischer esterification reaction</td>
<td>64</td>
</tr>
<tr>
<td>Figure 14</td>
<td>HPLC System with temperature control equipment</td>
<td>70</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Enantioseparation of racemic ibuprofen on Chiralpak AD</td>
<td>72</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Enantioseparation of racemic profens on Chiralpak AD</td>
<td>75</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Enantioseparation of racemic profens on Chiralcel OD</td>
<td>76</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Van’t Hoff plot for enantioseparation of profens on Chiralpak AD</td>
<td>79</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Van’t Hoff plot for enantioseparation of profens</td>
<td>79</td>
</tr>
</tbody>
</table>
Figure 20 Effect of temperature on enantioselectivity of profens on Chiralpak AD

Figure 21 Effect of temperature on enantioselectivity of profens on Chiralcel OD

Figure 22 Temperature dependence of enantioseparations on Chiralpak AD

Figure 23 Temperature dependence of enantioseparations on Chiralcel OD

Figure 24 $\ln \alpha$ vs. $1/T$ plot for enantioseparation of profens on Chiralpak AD

Figure 25 $\ln \alpha$ vs. $1/T$ plot for enantioseparation of profens on Chiralcel OD

Figure 26 Hydrogen bonding interactions between profen analyte and CSP

Figure 27 Plots of resolution vs. column temperature for the enantioseparations on Chiralpak AD

Figure 28 Plots of resolution vs. column temperature for the enantioseparations on Chiralcel OD

Figure 29 Structures of additional probe analytes

Figure 30 Effect of acidic mobile phase modifiers on the enantioseparation of ketoprofen on Chiralpak AD

Figure 31a Hydrogen bonding between acidic mobile phase modifier and profen

Figure 31b Hydrogen bonding between acidic mobile phase modifier and CSP

Figure 31c Hydrogen bonding between profen and CSP

Figure 32a Hydrogen bonding between ethanol and profen

Figure 32b Hydrogen bonding between ethanol and CSP

Figure 33 Proposed chiral recognition mechanism for ketoprofen
on Chiralpak AD showing hydrogen bonding

Figure 34 Total ion chromatogram and mass spectrum of fenoprofen methyl ester 108

Figure 35 Total ion chromatogram and mass spectrum of ibuprofen methyl ester 109

Figure 36 Total ion chromatogram and mass spectrum of ketoprofen methyl ester 110

Figure 37 Aromatic hydrocarbons and 1,3,5-tri-\textit{tert}-butylbenzene 112

Figure 38 Effect of ethanol concentration on the retention of profens on Chiralpak AD 112

Figure 39 Influence of acidic mobile phase modifiers on the enatioseparations of ketoprofen on Chiralpak AD 120

Figure 40 Influence of alcoholic mobile phase modifiers on the enatioseparations of flurbiprofen on Chiralcel OD 123
LIST OF TABLES

Table I Classification of chiral stationary phases (CSPs) 13
Table II Type 2 chiral columns 18
Table III Summary of intermolecular attractions for 46
diastereomeric complex formation
Table IV Chiral separations of racemic profens on Chiralpak AD 73
and Chiralcel OD
Table V Measured thermodynamic parameters on Chiralpak AD 86
and Chiralcel OD
Table VI Structures and ionization constants of the acidic 92
mobile phase modifiers
Table VII Influence of acidic mobile phase modifiers on retention 94
and enantioselectivity of profens on Chiralpak AD
Table VIII Influence of acidic mobile phase modifiers on retention 95
and enantioselectivity of profen methyl
esters on Chiralpak AD
Table IX Influence of acidic mobile phase modifiers on retention 104
and enantioselectivity of profens on Chiralcel OD
Table X Influence of acidic mobile phase modifiers on retention 105
and enantioselectivity of profen methyl
esters on Chiralcel OD
Table XI Effect of ethanol concentration on enantioselectivity 113
for profens on Chiralpak AD
Table XII Effect of alcoholic modifiers on the retention of 115
aromatic hydrocarbons on Chiralpak AD
Table XIII Retention of aromatic hydrocarbons on Chiralcel OD 115
Table XIV Polarity index and selectivity parameters of 116
alcoholic mobile phase modifiers
Table XV Enantioseparations on Chiralpak AD using different 117
alcoholic modifiers

Table XVI Percent change on retention and enantioselectivity of profens on Chiralpak AD using ethanol and tert-butanol 119

Table XVII Enantioseparations on Chiralcel OD using different alcoholic modifiers 121

Table XVIII Percent change on retention and enantioselectivity of profens on Chiralcel OD using ethanol and tert-butanol 122