PART I: SYNTHESIS OF AROMATIC POLYKETONES VIA SOLUBLE PRECURSORS DERIVED FROM BIS(α-AMINONITRILE)S

PART II: MODIFICATIONS OF EPOXY RESINS WITH FUNCTIONAL HYPERBRANCHED POLY(ARYLENE ESTER)S

by

Jinlian Yang

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

Dr. Harry W. Gibson, Chair

Dr. Harry C. Dorn Dr. James E. McGrath

Dr. Judy S. Riffle Dr. James M. Tanko

February, 1998

Blacksburg, Virginia

Keywords: Polymerization, Synthesis, Polyketones, Aminonitriles, Poly(arylene ester)s, Modifications, Toughening, Epoxies, Functionalization, Hyperbranched

Copyright 1998, Jinlian Yang
PART I: SYNTHESIS OF AROMATIC POLYKETONES VIA SOLUBLE PRECURSORS DERIVED FROM BIS(α-AMINONITRILE)S

PART II: MODIFICATIONS OF EPOXY RESINS WITH FUNCTIONAL HYPERBRANCHED POLY(ARYLENE ESTER)S

Jinlian Yang

(ABSTRACT)

Part I: This part of the dissertation describes a new approach to high molecular weight aromatic polyketones via soluble precursors derived from bis(α-aminonitrile)s. Bis(α-aminonitrile)s were easily synthesized from dialdehydes and secondary amines in very high yield by the Strecker reaction. Polymerization of bis(α-aminonitrile)s with activated dihalides using NaH as base in DMF yielded soluble, high molecular weight polyaminonitriles, which were hydrolyzed in acidic conditions to produce the corresponding polyketones. A novel approach to the synthesis of high molecular weight wholly aromatic polyketones without ether linkages or alkyl substituents in the polymeric backbones was demonstrated. These polyketones displayed excellent thermal properties and solvent resistance. A very efficient synthesis for diphenol and activated dihalide monomers containing keto groups was also developed based on α-aminonitrile chemistry. Novel activated dihalide monomers were obtained in quantitative yields. This method is suitable for any activated dihalide by reaction with 2 equivalents of 4-fluorobenzylaminonitrile and NaH, followed by hydrolysis to produce a new monomer with two more p-fluorobenzoyl units. For the synthesis of polyaminonitriles containing ether linkages in the polymeric backbone, only low to medium molecular weight polymers were obtained. The model studies proved that the carbanions of the aminonitriles can react with ether linkages to form more stable phenoxide anions and cause the termination of the polymerization.
Part II: Functional hyperbranched poly(arylene ester)s were synthesized by thermal polymerization of 5-acetoxyisophthalic acid or 3,5-diacetoxybenzoic acid. Carboxylic terminated hyperbranched copolyesters were also synthesized by copolymerization of 5-acetoxyisophthalic acid and 3-hydroxybenzoic acid using different molar ratios of these two monomers. Both carboxylic acid and phenolic terminated hyperbranched polyesters were functionalized with different reactive groups. The carboxyl terminated hyperbranched poly(arylene ester)s were successfully used to modify inherently brittle epoxy resins. The hyperbranched polymers were chemically incorporated into the epoxy networks using triphenylphosphine (TPP) as a catalyst and 4,4’-diaminodiphenyl sulfone (DDS) as a curing agent. The chemistry and the proper formation of crosslinked networks were confirmed by solution 1H NMR, solid state CPMAS 13C NMR, kinetic FTIR spectroscopes and gel fraction analysis. Fracture toughness was improved without sacrificing thermal properties. The fracture toughness K_{IC} values of the modified epoxies were found to be a function of the percentage loading, the molecular weights and the proportion of linear units of hyperbranched polyesters. Because the carboxylic acid terminated hyperbranched poly(arylene ester)s were immiscible with the commercially available epoxy EPON 828, the percentage loadings of hyperbranched modifiers were limited and the processibility of epoxy resins was difficult, especially at high percentage loadings of hyperbranched modifiers. These problems could be solved using phenolic terminated hyperbranched poly(arylene ester)s, which are more soluble in epoxy resins.
DEDICATION

TO

MY DEAR UNCLE
KOAY, AIK TENG
Acknowledgments

I would first like to express my sincere gratitude to Dr. Harry W. Gibson for his guidance, continued encouragement, support and patience while perusing this research.

I would also like to thank the members of my committee, Dr. Harry C. Dorn, Dr. James E. McGrath, Dr. Judy S. Riffle and Dr. James M. Tanko for their valuable suggestions and patience throughout this research. Thanks also go to professor McGrath and Professor Ward for providing thermal analysis, GPC data and the use of other equipment. Dr. Allan R. Shultz was kind enough to help me correct my thesis, his valuable help is gratefully acknowledged.

Special thanks go to Mr. Ojin Kwon and Dr. Qin Ji for their hard work and valuable help on the epoxy toughening project. Without their help, I would not have finished the second part of this dissertation. I would also like to thank students and postdocs in Dr. McGrath’s and Dr. Riffle’s group, especially those working on epoxy and vinyl ester areas: Drs. Sankarpandian and Shobha, Charles, Hong, Hui, Christy and others for their discussion and supply of starting materials.

I would also like to thank my friends in Dr. Gibson’s group: Nori, Bill, Lesley, Donghang, Gong, Shu, Darin, Lance, Mingfei and Devdatt for their discussion and encouragement.

My dear uncle, Koay Aik Teng, who is not only a great mentor and role model, but also supported me for all my high school years, college years and post graduate education, whenever I needed it. Without his financial supports and continues encouragement, I would not have succeeded. And for my parents, even though they only had two years education and have to raise nine children, they always do their best to support me. Thank you for raising me to always believe in myself, and I did this all for you.

Finally, I would like to thank my girlfriend, Ning, for her love, support, encouragement and patience. Thank you for always being there for me!
Table of Contents

Part I: Synthesis of Aromatic Polyketones via Soluble Precursors Derived from Bis(α-aminonitrile)s

Chapter 1 Literature Overview of Poly(arylene ether ketone) Synthesis

1.1 Introduction

1.2 Synthesis of Poly(arylene ether ketone)s

1.2.1 Electrophilic Routes

1.2.2 Nucleophilic Routes

1.2.3 Soluble Precursor Approaches

1.2.4 Other Routes

A. Carbon-Carbon Coupling Routes

B. Ring Opening Polymerization

1.3 Summary and Conclusions

Chapter 2 Aromatic Polyketones from α-Aminonitriles

2.1 Synthesis of α-Aminonitriles

2.2 Alkylation of Aryl(α-aminonitrile)s

2.3 Wholly Aromatic Poly(ketone ketone sulfone)s from Bis(α-aminonitrile)s

Chapter 3 Research Objectives and Scopes

Chapter 4 Synthesis of wholly Aromatic Polyketones without Ether Linkages by Soluble Precursors Derived from Bis(α-aminonitrile)s

4.1 Introduction

4.2 Results and Discussion

4.2.1 Synthesis and Characterizations of Poly(ketone ketone sulfone) (4.3)

A Bis(α-aminonitrile)s from Dialdehydes
Chapter 5 Synthesis of Aromatic Activated Dihalide and Diphenol Monomers for Poly(ether ketone)s

5.1 Introduction 66
5.2 Results and Discussion 70
5.2.1 Synthesis of Activated Dihalide Monomers 70
 A Difluorotriketone and Difluorodiketone Sulfone Monomers 70
 B Synthesis of Difluorotetraketone Sulfone Monomer (5.13) 79
5.2.2 Synthesis of Aryl Keto Phenol Monomers 84
5.3 Conclusions 85
5.4 Experimental 86

Chapter 6 Polymerization and Model Studies of Polyaminonitriles Containing Ether Linkages

6.1 Introduction 93
6.2 Results and Discussion 94
6.2.1 Synthesis of Bis(α-aminonitrile)s Containing Ether Linkages 94
6.2.2 Synthesis of Polyaminonitriles Containing Ether Linkages 102
6.2.3 Model Studies 108
 A The Stability of Activated Ether Linkage in the Presence of Carbanions 109
 B Competing Reaction between Activated Halide and Ether Linkage 116
PART II: MODIFICATIONS OF EPOXY RESINS WITH FUNCTIONAL HYPERBRANCHED POLY(ARYLENE ESTER)S

Chapter 7 Literature Review of Hyperbranched Polymers

7.1 Introduction
7.2 Dendrimers
7.3 Hyperbranched Polymers
 7.3.1 Polyphenylenes
 7.3.2 Aromatic Polyesters
 7.3.3 Aliphatic and Aromatic/Aliphatic Polyesters
 7.3.4 Poly(ether ketone)s
 7.3.5 Polyethers
 7.3.6 Polyamides
 7.3.7 Polyurethanes
 7.3.8 Polyamines
 7.3.9 Polycarbonates
 7.3.10 Polysiloxysilanes
 7.3.11 Hyperbranched Vinyl Polymers
7.4 Properties and Applications of Hyperbranched Polymers
7.5 Summary and Conclusions

Chapter 8 Literature Review of Epoxy Toughening

8.1 Introduction
8.2 Epoxy Resins
 8.2.1 Synthesis
8.2.2 Curing Agents 157
8.3 Methods for Epoxy Toughening 159
8.3.1 Rubber Modified Epoxy Resins 160
8.3.2 Thermoplastic Modified Epoxy Resins 164
8.3.3 Other Methods for Epoxy Toughening 166
8.4 Summary and Conclusions 168

Chapter 9 Research Objective and Scopes 169

Chapter 10 Synthesis, Functionalization and Characterization of Hyperbranched Poly(arylene ester)s 170
10.1 Introduction 170
10.2 Results and Discussion 172
10.2.1 Synthesis of AB$_2$ and AB Monomers 172
10.2.2 Synthesis and Characterization of Hyperbranched Poly(arylene ester)s 179
 A Poly(5-acetoxyisophthalic acid) (10.4, P1-COOH) 179
 B Molecular weight Control 181
 C Synthesis of Hyperbranched Copoly(arylene ester)s (10.8a-b) from AB$_2$
 and AB monomers 182
 D Measurements of COOH Equivalent weights of Hyperbranched Polyesters 184
 E Poly(3,5-diacetoxybenzoic acid) (10.10) 186
10.2.3 Functionalization of Hyperbranched Poly(arylene ester)s 192
 A Preparation of Ethyl Ester of P1-COOH (10.6) 192
 B Vinyl functionalization of P1-COOH (10.7) 193
 C Hydrolysis of 10.10 to Phenolic Terminal Polymer (10.11) 193
 D Degree of Branching 194
 E Attempted Cyanate Functionalization of P2-OH (10.12) 198
 F Phenylethynyl Functionalization of 10.11 (10.13) 198
 G Attempted Epoxy Functionalization of P2-OH (10.13) 202
Chapter 11 Modifications of Epoxy Resins with Functional Hyperbranched Poly(arylene ester)s

11.1 Introduction 216
11.2 Results and Discussion 218
 11.2.1 Curing of Epoxy with Carboxylic Acid Terminated Branched Polyesters 218
 A Chemistry 218
 B Preparation of Modified Epoxies 222
 11.2.2 Characterizations of Modified Epoxies 223
 A Solution 1H NMR Spectra of Prereacted Epoxy Resins 223
 B Solid State CPMAS 13C NMR Spectra of Cured Epoxy Resins 224
 C Kinetic FTIR Studies of Epoxy Curing 227
 D Gel Fractions of Modified Epoxies 233
 11.2.3 Fracture Toughness Measurements of Modified Epoxies 234
 11.2.4 Thermal Properties of Modified Epoxies 239
11.3 Summary and Conclusions 240
11.4 Experimental 241

Thesis Summary 244

Vita 247
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>400 MHz 1H NMR spectrum of 4.1b in CDCl$_3$</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>400 MHz 1H-1H COSY spectrum of polymer 4.2 in CDCl$_3$</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>400 MHz 1H NMR spectra of 4.2 in CDCl$_3$ and 4.3 in DMSO-d$_6$</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>FTIR spectra of polymers 4.2 and 4.3 (KBr)</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>400 MHz 1H-1H COSY spectrum of polymer 4.2 in CDCl$_3$</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>100 MHz 1H-1H COSY spectrum of polymer 4.2 in CDCl$_3$</td>
<td>37</td>
</tr>
<tr>
<td>4.7</td>
<td>2D-2D-HETCOR spectrum of polymer 4.2 in CDCl$_3$</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>FTIR spectra of polymers 4.4a and 4.5 (KBr)</td>
<td>43</td>
</tr>
<tr>
<td>4.9</td>
<td>400 MHz 1H-1H COSY spectrum of polymer 4.4a in D$_2$SO$_4$</td>
<td>46</td>
</tr>
<tr>
<td>4.10</td>
<td>FTIR spectra of polymers 4.4a and 4.5 (KBr)</td>
<td>47</td>
</tr>
<tr>
<td>4.11</td>
<td>400 MHz 1H NMR spectra of 4.4a in CDCl$_3$ and 4.5 in D$_2$SO$_4$</td>
<td>49</td>
</tr>
<tr>
<td>4.12</td>
<td>1D-1D-HETCOR spectrum of polymer 4.4a in CDCl$_3$</td>
<td>50</td>
</tr>
<tr>
<td>4.13</td>
<td>Thermogravimetric curves of polymers 4.4a and 4.5 in air at 100°C/min</td>
<td>51</td>
</tr>
<tr>
<td>4.14</td>
<td>Wide angle X-ray diffraction pattern of polymer 4.5</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>400 MHz 1H NMR spectra of 5.11a and 5.4a in CDCl$_3$ (crude product)</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>100 MHz 1H NMR spectra of 5.11a and 5.4a in CDCl$_3$ (crude product)</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>FTIR spectrum of 5.11a (KBr)</td>
<td>75</td>
</tr>
<tr>
<td>5.4</td>
<td>FTIR spectrum of 5.4a (KBr)</td>
<td>76</td>
</tr>
<tr>
<td>5.5</td>
<td>400 MHz 1H NMR spectrum of 5.11b in CDCl$_3$ (crude product)</td>
<td>78</td>
</tr>
<tr>
<td>5.6</td>
<td>FTIR spectrum of 5.4a (KBr)</td>
<td>79</td>
</tr>
<tr>
<td>5.7</td>
<td>400 MHz 1H NMR spectrum of 5.12 in CDCl$_3$ (crude product)</td>
<td>81</td>
</tr>
<tr>
<td>5.8</td>
<td>400 MHz 1H NMR spectrum of 5.13 in DMSO-d$_6$ (crude product)</td>
<td>82</td>
</tr>
<tr>
<td>5.9</td>
<td>400 MHz 2D-COSY spectrum of 5.13 in DMSO-d$_6$</td>
<td>83</td>
</tr>
<tr>
<td>6.1</td>
<td>400 MHz 1H NMR spectrum of 6.1a in CDCl$_3$</td>
<td>96</td>
</tr>
<tr>
<td>6.2</td>
<td>400 MHz 1H NMR spectrum of 6.2a in CDCl$_3$</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>100 MHz 1H NMR spectrum of 6.2a in CDCl$_3$</td>
<td>98</td>
</tr>
<tr>
<td>6.4</td>
<td>400 MHz 1H NMR spectrum of 6.1b in DMSO-d$_6$</td>
<td>99</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>400 MHz 1H NMR spectrum of 6.6 in CDCl$_3$</td>
<td>101</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>100 MHz 13C NMR spectrum of 6.6 in CDCl$_3$</td>
<td>101</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>400 MHz 1H NMR spectrum of 6.7 in CDCl$_3$</td>
<td>104</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>400 MHz COSY spectrum of 6.7 in CDCl$_3$ (aromatic region)</td>
<td>105</td>
</tr>
<tr>
<td>Figure 6.9</td>
<td>GPC traces (RI response) of polymer 6.7 at different reaction times (NMP, 60 °C, 1.0 mL/min)</td>
<td>106</td>
</tr>
<tr>
<td>Figure 6.10</td>
<td>Reverse phase HPLC chromatogram 6 of the crude product (C$_{18}$, THF/water, gradient)</td>
<td>112</td>
</tr>
<tr>
<td>Figure 6.11</td>
<td>400 MHz 1H NMR spectrum of 6.14 in CDCl$_3$</td>
<td>113</td>
</tr>
<tr>
<td>Figure 6.12</td>
<td>100 MHz 13C NMR spectrum of 6.14 in CDCl$_3$</td>
<td>113</td>
</tr>
<tr>
<td>Figure 6.13</td>
<td>400 MHz COSY spectrum of 6.13 in CDCl$_3$ (aromatic region)</td>
<td>114</td>
</tr>
<tr>
<td>Figure 6.14</td>
<td>400 MHz 1H NMR spectrum of 6.13 in CDCl$_3$</td>
<td>115</td>
</tr>
<tr>
<td>Figure 6.15</td>
<td>100 MHz 13C NMR spectrum of 6.13 in CDCl$_3$</td>
<td>116</td>
</tr>
<tr>
<td>Figure 6.16</td>
<td>400 MHz 1H NMR spectrum of the crude product of 6.6 + NaH in CDCl$_3$</td>
<td>119</td>
</tr>
<tr>
<td>Figure 10.1</td>
<td>100 MHz 13C NMR spectrum of compound 10.1 in DMSO-d$_6$</td>
<td>174</td>
</tr>
<tr>
<td>Figure 10.2</td>
<td>1H-13C HETCOR spectrum of compound 10.1 in DMSO-d$_6$</td>
<td>175</td>
</tr>
<tr>
<td>Figure 10.3</td>
<td>400 MHz 1H NMR spectrum of compound 10.2 in DMSO-d$_6$</td>
<td>176</td>
</tr>
<tr>
<td>Figure 10.4</td>
<td>100 MHz 13C NMR spectrum of compound 10.2 in DMSO-d$_6$</td>
<td>177</td>
</tr>
<tr>
<td>Figure 10.5</td>
<td>1H-13C HETCOR spectrum of compound 10.2 in DMSO-d$_6$</td>
<td>178</td>
</tr>
<tr>
<td>Figure 10.6</td>
<td>400 MHz 1H NMR spectrum of polymer 10.4 in DMSO-d$_6$</td>
<td>181</td>
</tr>
<tr>
<td>Figure 10.7</td>
<td>400 MHz 1H NMR spectrum of polymer 10.10 in DMSO-d$_6$</td>
<td>189</td>
</tr>
<tr>
<td>Figure 10.8</td>
<td>400 MHz TOSY spectrum of polymer 10.10 in DMSO-d$_6$</td>
<td>190</td>
</tr>
<tr>
<td>Figure 10.9</td>
<td>GPC trace of polymer 10.10 (NMP, 60 °C, 1 mL/min, RI detector)</td>
<td>191</td>
</tr>
<tr>
<td>Figure 10.10</td>
<td>400 MHz 1H NMR spectrum of polymer 10.7 in DMSO-d$_6$</td>
<td>194</td>
</tr>
<tr>
<td>Figure 10.11</td>
<td>400 MHz TOSY spectrum of polymer 10.11 in DMSO-d$_6$</td>
<td>196</td>
</tr>
<tr>
<td>Figure 10.12</td>
<td>400 MHz 1H NMR spectrum (aromatic region) of polymer 10.11 in DMSO-d$_6$</td>
<td>197</td>
</tr>
<tr>
<td>Figure 10.13</td>
<td>400 MHz 1H NMR spectrum of compound 10.19 in DMSO-d$_6$</td>
<td>199</td>
</tr>
<tr>
<td>Figure 10.14</td>
<td>100 MHz 13C NMR spectrum of compound 10.19 in DMSO-d$_6$</td>
<td>200</td>
</tr>
</tbody>
</table>
Figure 10.15 400 MHz COSY spectrum of compound 10.19 in DMSO-d_6

Figure 11.1 400 MHz ^1H NMR spectra of a) unreacted resin of P1-COOH (5 phr) and EPON 828, b) prereacted resin (TPP, 0.5 phr, 110 °C 30 minutes) in DMSO-d_6

Figure 11.2 a) 90 MHz ^13C CPMAS solid state NMR spectrum of P1-COOH (LMW, 9 phr) modified epoxy, b) 90 MHz ^13C CPMAS solid state NMR spectrum of P1-COOH (LMW, 9 phr) modified epoxy “spiked” with P1-COOH (LMW, ~15 wt% of epoxy)

Figure 11.3 FTIR spectrum of P1-COOH (LMW, KBr)

Figure 11.4 FTIR spectrum of EPON 828 (from Shell, MW~ 380 g/mol, neat)

Figure 11.5 FTIR spectrum of 4,4’-diaminodiphenyl sulfone (KBr)

Figure 11.6 Kinetic FTIR spectra of epoxy modified with P1-COOH (LMW, 3 phr,) TPP (0.5 phr) and DDS (180 °C 2 hours, 220 °C 2 hours)

Figure 11.7 The K_{IC} values of P1-COOH (LMW) modified epoxies

Figure 11.8 The K_{IC} values of cured epoxies modified with different molecular weights P1-COOH

Figure 11.9 The K_{IC} values of cured epoxies modified with P1-COOH, 2:1 copolymer and 1:1 copolymer
List of Tables

Table 1.1 The T_g and T_m values of representative PAEKs 3
Table 4.1 GPC data of polyaminonitriles (NMP, 60 °C, 1 mL/min) 52
Table 4.2 The thermal properties (TGA and DSC) of aromatic polyketones 53
Table 6.1 GPC data of polyaminonitrile 6.7 (NMP, 60 °C, 1 mL/min) 104
Table 10.1 The COOH equivalent weights calculated from titration (TMAH, 0.02505 N) 185
Table 10.2 The COOH equivalent weights of branched polyesters calculated from titration and 1H NMR Spectra 186
Table 10.3 The molecular weight data for ethyl esters of polyesters (NMP, 60 °C, 1 mL/min, DV detector) 192
Table 11.1 The gel fractions of cured epoxies (Soxhlet extraction with THF for 3 days) 233
Table 11.2 The K_{IC} values of cured epoxies (TPP, DDS, 180 °C 2 h, 220 °C 2 h) 237
Table 11.3 The thermal properties of cured epoxies 239