ACKNOWLEDGEMENTS

I would like to acknowledge the advice and guidance of Dr. Marshall S. White, committee chairman. I also thank the members of my graduate committee for their guidance and suggestions, especially Mr. Philip A. Araman for all his advice, encouragement, and financial assistance. I also thank the Brooks lab staff, especially John Conway. Special thanks go to Mr. John Clarke, without whose knowledge and assistance this study would not have been successful.

I acknowledge the USDA Forest Service Southern Research Station, and Virginia Tech for their financial support for this project.

The major experiment materials for this study, stringers, deck boards, and metal connector plates, were provided by Lannes Williamson Pallets, Smalley Package Co., Inc., Marshane Corporation, A Division of Alpine Engineered Products, Inc., and Eagle Metal Products, Inc.. I appreciate their support.

I would like to thank my family members, especially my wife, Yingtao Yu, and my daughter Michelle T. Tong for supporting and encouraging me to pursue this degree. Without my wife’s encouragement, I would not have finished the degree.
TABLE OF CONTENTS

Acknowledgments. .. iv

Table of Content .. v

List of Figures .. vii

List of Tables ... x

1. INTRODUCTION .. 1
 1.1 Overview .. 1
 1.2 Research Objectives ... 4

2. LITERATURE REVIEW .. 5
 2.1 Pallet Stringer Failure ... 5
 2.2 Metal Connector Plates ... 6
 2.3 Studies of Wood Structures with Metal Connector Plates 7
 2.4 Preliminary Bending Tests of Spliced Stringers .. 8

3. METHODS AND MATERIALS .. 11
 3.1 Overview ... 11
 3.2 Apparatus .. 11
 3.3 Metal Connector Plate Selection .. 14
 3.4 Splice Designs and Plating Method ... 16
 3.5 Experimental Design ... 18
 3.5.1 Stringer Tests .. 19
 3.5.1.1 Specimen Selection ... 19
 3.5.1.2 Stringer Dimension ... 19
 3.5.1.3 Static Bending Test Setup .. 20
 3.5.2 Pallet Tests ... 23
 3.5.2.1 Specimen Selection ... 23
 3.5.2.2 Test Pallet Components ... 25
 3.5.2.3 Uniform Bending Test Setup ... 25
 3.6 Statistical Methods of Data Analysis .. 27
 3.7 Comparing Types and Percentage of Stringer Failure ... 27
4. RESULTS AND DISCUSSION... 28
 4.1 Overview... 28
 4.2 Failure Modes of Spliced Stringer with MCP....................... 28
 4.3 Spliced Stringer Test Results.. 29
 4.3.1 The Effect of MCP Design and Splice Method on the Bending Strength
 and Stiffness of Spliced Oak Stringers................................. 29
 4.3.2 The Effect of A Gap between Segments on the on the Bending Strength
 and Stiffness of Southern Yellow Pine
 and Yellow-Poplar Spliced Stringers................................ 31
 4.3.3 Splicing Stringer Segments of Different Wood Species.......... 33
 4.3.4 Splicing New and Used Oak Stringer Segments................... 34
 4.4 Pallets with Spliced Stringers ... 43

5. SUMMARY AND CONCLUSIONS.. 54
 5.1 Summary... 54
 5.2 Conclusions... 55
 5.2.1 Spliced Stringer... 55
 5.2.2 Pallet with Spliced Stringer(s)... 56

6. Recommendations for Future Research.. 57

Literature Cited... 58

Appendix A.. 63

Appendix B.. 67

Appendix C.. 68

Vita.. 75
LIST OF FIGURES

Figure 1.1 Typical non-reversible, flush, 48- by 40-inch wooden pallets.................2
Figure 2.1 Three common failures in wood pallet stringers..............................5
Figure 3.1 Pneumatic plater used to splice stringer segments with metal connector plates...12
Figure 3.2 Tinius Olsen electomatic universal testing machine used for stringer tests..12
Figure 3.3 Tinius Olsen deflectometer used to measure the deflection during bending tests of spliced stringer...13
Figure 3.4 The airbag testing machine used to conduct pallet bending tests..........14
Figure 3.5 Photograph of the test metal connector plates used in this splicing study.15
Figure 3.6 Types of splices tested..16
Figure 3.7 Photograph of typical splices tested...17
Figure 3.8 Photograph of splicing stringer segments.................................18
Figure 3.9 Width and height of paired spliced used segments of different size used stringers...20
Figure 3.10 Photograph of the bending tests of spliced stringers.....................22
Figure 3.11 Schematic diagrams of spliced stringer test pallet designs..............24
Figure 3.12 Uniform bending test setup...25
Figure 4.1 The effect of segment width difference on the bending strength of spliced stringers...36
Figure 4.2 Typical Load vs. deflection plot from the bending tests of spliced oak
stringers..37

Figure 4.3 Photograph showing the tension failures of plug plates that occurs during
the bending tests of vertical spliced stringers.................................38

Figure 4.4 Photograph showing the compression and buckling failures of truss plates
that occurs during the bending tests of spliced stringers with gap........39

Figure 4.5 Photograph showing the tension failures of truss plates that occurs during
the bending tests of vertical spliced stringers.................................40

Figure 4.6 Photograph showing the between notch (BN) failure that occurs during the
bending tests of vertical spliced stringers..41

Figure 4.7 Photograph showing the plate withdrawal (PTW) failure that occurs
during the bending tests of angle spliced stringers42

Figure 4.8 Load vs. deflection relationship from pallet bending tests (examples) of pallet
without spliced stringers ..46

Figure 4.9 Load vs. deflection relationship from pallet bending tests (examples) of
pallet with center stringer spliced ..47

Figure 4.10 Load vs. deflection relationship from pallet bending tests (examples) of
pallet with both side stringers spliced...48

Figure 4.11 Load vs. deflection relationship from pallet bending tests (examples) of
pallet with three spliced stringers...49

Figure 4.12 Photograph showing the between-notch (BN) failure of stringer in pallet
bending test...50
Figure 4.13 Photograph showing the plate break (PF) failure in bending pallet test…51
Figure 4.14 Photograph showing the plate withdrawal (PTW) failure in bending pallet test……………………………………………………………………..…52
Figure 4.15 Photograph showing the between-notch (BN) and plate break (PF) failure of stringers in bending pallet test………………………………….…53
Figure 6.1 Reinforcement plate design ..57
Figure A.1 Truss plate 3x4 or 3x6-inch (20 gauge, 2-tooth, alternating)63
Figure A.2 Plug plate 3x4-inch (20 gauge, 5-tooth plug, round)63
Figure A.3 Plug plate 3x4-inch (20 gauge, 4-tooth, round)63
Figure A.4 Plug plate 3x3-inch (20 gauge, 6-tooth, round)63
Figure A.5 Plug plate 3x4-inch (20 gauge, 4-tooth, x-shaped)64
Figure A.6 Truss plate 1.25x3.25-inch (20 gauge, 2-tooth, alternating)64
Figure A.7 Truss plate 2x6 and 3x6-inch (20 gauge, 2-tooth, in-series)64
Figure A.8 Plug plate 2x6-inch (20-gauge, 5-tooth, round)64
Figure A.9 Plug plate 2x6-inch (20 gauge, 4-tooth, round)65
Figure A.10 Plug plate 2x6-inch (20 gauge, 4-tooth, x-shaped)65
Figure A.11 Truss plate 2x6-inch (20 gauge, 2-tooth, alternating)65
Figure A.12 Truss plate 2x13 and 3x13-inch (20 gauge, 2-tooth, in-series)66
LIST OF TABLES

Table 2.1 Results of the preliminary flexural strength tests of spliced 48” oak stringers..9
Table 3.1 Description of test metal connector plates..15
Table 3.2 Description of the test pallet..23
Table 3.3 Summary of stringer and pallet test design and replicate tests........26
Table 4.1 Bending strength and stiffness of oak spliced stringer segments or a fraction of plate type..30
Table 4.2 The effect of a gap between segments on the bending strength and stiffness of southern yellow pine and yellow-poplar spliced stringers.....32
Table 4.3 The effect of mixing species on the bending strength and stiffness of spliced stringers ...34
Table 4.4 The effect of variation of segments size on the bending strength and stiffness of spliced stringers..35
Table 4.5 The effect of spliced stringers on pallet bending strength and stiffness....43
Table 4.6 5% lower exclusion limit (LEL) of pallet banding strength and stiffness measurement..44
Table 4.7 Statistics of first failure stringer during pallet tests.........................45