MODELING OF AIRPORT OPERATIONS USING AN OBJECT-ORIENTED APPROACH

by

Caoyuan Zhong

A dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

CIVIL ENGINEERING

APPROVED:

Dr. Antonio A. Trani, Chairman

Dr. Donald R. Drew

Dr. Richard D. Walker

Dr. R. Sivanandan

Dr. Keying Ye

February 4, 1997

Blacksburg, Virginia

Keywords: Airport, Simulation, Object-Oriented Modeling, Java
MODELING OF AIRPORT OPERATIONS USING AN OBJECT-ORIENTED APPROACH

by

Caoyuan Zhong

Dissertation Director
Dr. Antonio A. Trani

(ABSTRACT)

This research develops an object-oriented approach to model airport ground network traffic operations. A generic modeling library is developed as a tool kit to model the basic traffic operations in the airfield using an object-oriented approach. The proposed generic modeling library for airfield operations is a collection of predefined abstract components implemented in the Java object-oriented programming language. Classes are defined and used as the basic components in a variety of airfield operation modeling, simulations, and optimizations.

The generic airport modeling framework consists of a set the components that are necessary for modeling the basic activities of airfield traffic operations. By using the multi-threading techniques, components are integrated into the proposed modeling framework. Unlike traditional sequential simulation model, this framework organizes simulation activities into four major groups which are: flight schedule, aircraft movement, time, and animation. Instead of using built-in control logic, the framework adapts an open system policy which gives the flexibility to the end users to incorporate the user-preferred control logic into the end models. Another purpose in this research is to provide a future mechanism to study airfield ground traffic automated control systems with Just-In-Time forecasting and model system performance in a real-time ATC environment. The proposed generic library could be implemented into a Internet/intranet ready application which can query real time information and
provide real time advice to pilots and air traffic controllers. This study is one of a few current research projects that are of using multiple threading technique to study traffic operation problems.

The proposed generic library is originally implemented with C++ and, in the final stage, with Java, a truly cross-platform object-oriented language. Application written in Java can run on most of the mainstream computer operating systems without modifications. Although the proposed library is for airfield traffic control system, it could also be extended into air traffic control system as well as advanced transportation system.
ACKNOWLEDGMENTS

I would like to express my sincerest thanks to Dr. Antonio A. Trani, who serves as the chairman of my dissertation committee, for his guidance and continuing support of my graduate study. Without his thoughtful advice and encouragement, this experimental research would have not been finished.

My thanks go to Dr. Donald R. Drew for his invaluable supporting me to start my graduate study at Virginia Tech. I benefit greatly from his philosophy of system dynamics.

I would like to thank Dr. Richard D. Walker for serving as my dissertation committee member and his technical advice. I enjoyed working as a teaching assistant for him.

I would like to thank Dr. R. Sivanandan for serving as my dissertation committee member and his technical advice. I enjoyed working as a teaching assistant for him.

I would like to thank Dr. Keying Ye for serving as my dissertation committee member and his advice in this research.

I gratefully acknowledge the support of a previous research by FAA through a research fund. This research is based on the valuable results of the previous research.

I am deeply indebted to my parents, to my whole family, and specially, to my wife, Yin Fu, for their encouragement and dedicated support.
Table of Contents

Preface ii
Acknowledgments iv

Chapter 1 Introduction
1.1 Background of the Problem 1
1.2 Objective and Scope of This Study 4

Chapter 2 Evaluation of System Modeling Technologies
2.1 System Modeling Technologies 6
2.2 New Requirements of System Integration 7
2.3 Object Oriented Programming(OOP) and Modeling (OOM) 7
2.4 Characteristics of Object Oriented Programming 27
2.5 Comparison of Traditional Modeling Paradigm and Object-Oriented Paradigm 30
2.6 Current Applications of Object-Oriented Method in System Modeling 30
2.7 Current Airport Systems Simulation Tools 33
2.8 A General Framework for Airport Operation Modeling 34

Chapter 3 Designing A Task Engine to Simulate Airfield Operations
3.1 Description of Airport Operation System Dynamics 35
3.2 Task Driven Simulation Engine 37
3.3 Queuing with Priority 38
3.4 Interleaved Interpretation of Concurrence 38
3.5 Basic Structure of the Task Class 41
 3.5.1 Identifier data 41
 3.5.2 Supplemental Data 44
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Conclusions and Recommendations</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Appendix A</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Vita</td>
<td>146</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1 Coad/Yourdon object-oriented analysis (reproduced from Carmichael, 1995). 11
Figure 2.2 Booch class diagram (reproduced from Carmichael, 1995). 12
Figure 2.3 Three data views (a) Martin/Odell; (b) Rumbaugh; (c) Shlare/Mellon (reproduced from Carmichael, 1995). 13
Figure 2.4 Jacobon’s data view (reproduced from Carmichael, 1995). 14
Figure 2.5 Shlare-Mellor State Transition Diagram (reproduced from Carmichael, 1995). 16
Figure 2.6 Martin/Odell’s object flow diagram (reproduced from Carmichael, 1995). 18
Figure 2.7 Wirfs-Brock collaboration graph (reproduced from Carmichael, 1995). 20
Figure 2.8 Hierarchical Modeling Concepts Presented by Luna (1990), reproduced from AbouRizk (1994). 31
Figure 3.1 Multitask event (tasks) handling channel. 39
Figure 3.2 Illustration of interleaved concurrent process. 40
Figure 3.3 The message flow of the global simulation clock. 42
Figure 4.1 Message flow of airplane list class. 55
Figure 4.2 A linked list structure of the airplane list. 56
Figure 4.3 State model for a landing airplane 59
Figure 4.4 Message flow of airplane class. 63
Figure 4.5 Data structure of airplane class. 64
Figure 4.6 Message flow of airfield network class. 67
Figure 4.7 Message flow of shortest path processor. 70
Figure 4.8 Message Flow of Airfield Simulation Framework 76
Figure 5.1 Interface of airport ground monitor 78
Figure 5.2 Airport ground network scenario. 83
Figure 5.3 Average travel time for arriving aircraft. 90
Figure 5.4 Average travel time for departing aircraft. 91
Figure 5.5 Average travel time in the network. 92
Figure 5.6 Average arrival delay. 93
Figure 5.7 Average departure delay. 94
List of Tables

Table 2.1 Contrasting Traditional and Object-Oriented Paradigms for Simulation Modeling, (reproduced from [Mize, 1992]). 32
Table 5.1 Exits for Runway 16 R 88
Table 5.2 Traffic Paths in the Airfield Network 89