Table of Contents

Title Page
Abstract
Acknowledgments
Table of Contents
List if Tables and Illustrations

Chapter 1: Introduction

1.1 Optical Fiber Communication Systems
1.2 Wavelength Division Multiplexing
 1.2.1 Why WDM?
 1.2.2 State-of-the-Art
1.3 Spectrum-Sliced WDM Systems
 1.3.1 Use of EDFA-ASE as Broadband Source
 1.3.2 Spectral-Slicing for Local Access Networking
1.4 Motivation for this Dissertation
1.5 Outline of this Work

Chapter 2: Signal Detection in Laser-Based Systems

2.1 Optoelectronic Receivers
 2.1.1 Noise Limitations in Optical Receivers
 2.1.2 Normalized Receiver Sensitivity
2.2 Signal Detection
 2.2.1 Probabilistic Analysis for Digital Lightwave Systems
 2.2.2 Shot Noise/Quantum Limit to Receiver Sensitivity
 2.2.3 Thermal Noise Limited Photoreceivers
2.3 Erbium-Doped Fiber Amplifiers
 2.3.1 Gain Dynamics and Noise Figure
 2.3.2 Amplifier Applications
2.4 Photodetection of Optically Amplified Signals
 2.4.1 Improvement in Receiver Sensitivity
 2.4.2 Receiver Sensitivity of Optically-Preamplified OOK System
 2.4.3 Receiver Sensitivity of Optically Preamplified FSK System
2.5 Summary
Chapter 3: Spectrum-Sliced WDM Using OOK Transmission

- **3.1** Introduction and Motivation 57
- **3.2** Incoherent Detection of Noise-Like Signals 58
- **3.3** Receiver Structure and Mathematical Model 60
- **3.4** PIN Receiver Detection for Spectrum-Sliced WDM 64
 - **3.4.1** Gaussian Approximation 64
 - **3.4.2** Exact Analysis 65
- **3.5** Optical Preamplifier Receiver for Spectrum-Sliced WDM 68
 - **3.5.1** Gaussian Approximation 69
 - **3.5.2** Exact (Chi-Square) Analysis 69
- **3.6** System Considerations 71
 - **3.6.1** System Transmission Capacity 72
 - **3.6.2** System Power Budget 72
- **3.7** Use of FEC Coding to Improve Transmission Capacity 73
- **3.8** Discussion 74

Chapter 4: Spectrum-Sliced WDM Using FSK Transmission

- **4.1** Introduction 86
 - **4.1.1** Why Spectrum-Sliced FSK ? 87
- **4.2** PIN Receiver Detection for FSK 88
 - **4.2.1** Gaussian Approximation 90
 - **4.2.2** Exact Analysis 91
- **4.3** Optical Preamplifier Receiver for FSK Detection 91
 - **4.3.1** Gaussian Approximation 91
 - **4.3.2** Exact Analysis 93
- **4.4** FSK vs. OOK 95
 - **4.4.1** Deterministic Laser-Based Systems 95
 - **4.4.2** Spectrum-Sliced Noise-Like Systems 97
 - **4.4.3** Numerical Example 99
- **4.5** Summary 102

Chapter 5: Effect of Non-Rectangular Spectra on Receiver Sensitivity

- **5.1** Tunable Optical Fiber Filters 114
 - **5.1.1** Use of the Butterworth Filter Approximation 117
5.2 Mathematical Formulation

5.2.1 Signal Path in Terms of Filter Parameters
5.2.2 Noise Path in Terms of Filter Parameters

5.3 OOK Transmission Analysis

5.3.1 Gaussian Approximation
5.3.2 Chi-Square Analysis

5.4 FSK Transmission Analysis

5.4.1 Gaussian Approximation
5.4.2 Chi-Square Analysis

5.4 OOK vs. FSK

5.5 Summary

Chapter 6: Conclusions and Proposal for Future Research

6.1 Significance of Investigation
6.2 Future Research

6.2.1 Effect of Interchannel Distortion and Dispersion
6.2.2 Implication of Varying the Line Coding Scheme
6.2.3 Noise Reduction Techniques for the Spectrally-Sliced Source
6.2.4 Use of Alternate Broadband Sources

Appendix A: Use of the Karhunen-Loeve Expansion to Represent EDFA-ASE Noise

Appendix B: Error Probability for Spectrum-Sliced FSK Systems

References

Vita