GOVERNMENT LABORATORY TECHNOLOGY TRANSFER:
PROCESS AND IMPACT ASSESSMENT

by
Sally Ann Rood

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Public Affairs and Public Administration

APPROVED:

James F. Wolf, Chairman

_________________________________ _________________________________
John W. Dickey Larkin S. Dudley

_________________________________ _________________________________
Alistair M. Brett Richard L. Chapman

April 25, 1998
Blacksburg, Virginia

Keywords: Technology Transfer, Federal Laboratories, Technology Policy

Copyright (c) 1998 by Sally A. Rood
GOVERNMENT LABORATORY TECHNOLOGY TRANSFER:
PROCESS AND IMPACT ASSESSMENT

by

Sally Ann Rood

Chairman, Dr. James F. Wolf
Center for Public Administration and Policy

(ABSTRACT)

This study involved a qualitative comparative analysis of government laboratory technology transfer, examining both the process and impact of successful cases before and after passage of technology transfer legislation. The legislation, passed in the mid- and late-1980s, was intended to encourage cooperative research for commercialization purposes.

The study examined a variety of factors related to government laboratory technology transfer, including the researchers’ roles, mechanisms used, partners, and economic impact.

Certain aspects of the researchers’ roles became more positive toward technology transfer. They contributed to technology marketing by producing more laboratory prototypes and samples in the post-legislation period. On the other hand, they retreated from broad-based technology marketing in the sense that their roles as technology champions became centered around their relationships with their CRADA partners. There was an undercurrent of caution by the laboratory researchers towards technology transfer in both the pre-legislation and post-legislation periods, and neither time period contained many examples of market analysis or technology evaluation work by the laboratories. Also, there was tension between the research role and technology transfer role, possibly indicating a lack of trust in that relationship.

The laboratories primarily used CRADAs and licenses to transfer technologies, and used other mechanisms to a lesser degree. There was even less variety in mechanisms in the post-legislation period. The researchers’ comments about license royalty-sharing became stronger in the post-legislation period, indicating that incentive is working. Yet, the data suggested new administrative needs such as for royalty tracking statements and dispute mechanisms.

The post-legislation period involved more small-firm partners and more user-initiated contacts, indicating more market pull. The post-legislation period also exhibited more “institutionalized” university relationships. State and local governments were not prominent among the users in either time period.

The technology transfer legislation had positive effects in terms of economic impact and outcomes. The following indicators increased in the post-legislation period: new products (generated as a result of technology transfer), sales revenues, new companies, new jobs, and
technology transfer contributions to dual use. Technology transfer and commercialization failures decreased and the time to market decreased.

The assessment revealed additional findings related to increased international activity, private sector problems, and other factors contributing to technology transfer.

An extensive literature review provided background for the issues and problems in evaluating technology transfer. This review included an inventory of technology transfer measurement activities to-date, including models from non-government technology transfer communities. The study experience, itself, further uncovered some insights to technology transfer metrics at a time when the experience base in this area is still premature.
ACKNOWLEDGMENTS

First and foremost, I would like to thank my Committee Chair, Dr. James F. ("Jim") Wolf, who spent many long hours reviewing my draft material and offering his valuable suggestions for improvement. He had a wonderful capacity to see the broad horizon while I was stuck on the trail in the woods, and he shared that vision with me at the times it was needed most. He is one of the most caring “coaches” I have ever had.

My Dissertation Committee also offered feedback that helped to keep me focussed on appropriate big picture issues. The combination of their diversity of interests and innovative views helped to interrelate the chapters and bring the research full circle to a complete package. My committee members were Dr. John W. Dickey, Dr. Larkin S. Dudley, Dr. Alistair M. Brett, and Dr. Richard L. Chapman. Special thanks to Alistair Brett for supplementing his exciting overseas travel and communications with my dissertation baggage. Particular thanks to Dick Chapman for putting up with me (at conferences, over the phone, etc.) questioning him regarding his extensive experience, detailed knowledge, and helpful opinions in this area.

Another person I would like to thank is Dr. Orion F. White. I started the doctoral program with his “boot camp” course and from that moment and throughout the course work he was an inspiration that caused me to stretch my views of the world. I feel so fortunate to have had him as a teacher.

I would not have been able to do this research if it were not for Dr. Loren C. Schmid, Former Chair of the Federal Laboratory Consortium (FLC). With FLC Executive Committee concurrence, Loren gave me permission to pursue the research, and he and his staff kindly shared necessary FLC background materials to help get me started along with many helpful suggestions.

Each of the laboratory scientists and company officials who spent numerous hours being interviewed for this study are very much appreciated. It is evident that they are deeply dedicated to their work because, in many cases, they graciously forwarded articles, packages of information, additional contacts, and helpful documents. In some cases, they even forwarded product samples. They were also very willing to respond to follow-up questions to verify the accuracy of information. I take responsibility for any incorrect information at this point.

Thank you to Jeffery W. Reynolds for his calming computer-related advice, including everything from evaluating the qualitative research software packages to word processing hints. Thanks, also, to Dr. John A. Abrahams for his patience during the process converting to the required electronic version for web posting.

Many thanks to the very talented Lan Crickman for her graphics work related to this research.
I was fortunate to have superb editing assistance. This included Susan W. Gates, a public policy expert and speech writer, on the analysis portion, and Linda D. Voss, professional technology writer and editor extraordinaire, on the cases.

Finally, Catherine R. Byrnes at the Northern Virginia office of Virginia Tech’s Center for Public Administration and Policy cheerfully handled a variety of administrative matters in response to extraordinary circumstances and deadlines. I greatly appreciate her organizational skills and diligence!
This dissertation is dedicated to

my family,

whom I love very much
TABLE OF CONTENTS

Abstract

Acknowledgements .. iv

Chapter

I. **INTRODUCTION** ... 1

TECHNOLOGY TRANSFER LEGISLATION ... 1

BRIEF BACKGROUND ... 2

End of the Cold War Brought Defense Conversion, Dual Use 2

Competitiveness Brought International Economic Wars .. 3

Budget Wars Caused Science/Technology Dichotomy ... 4

DISSERTATION PURPOSE .. 6

RESEARCH DESIGN INVOLVED QUALITATIVE SURVEY 7

Philosophical Basis - Fourth Generation Evaluation .. 7

Implementation Framework - Case Survey Method .. 8

Level I Analysis - The Sample ... 9

Level II Analysis - Time Frame Delineation .. 9

Level III Analysis - Case Development ... 11

ADDRESSING, OVERCOMING RESEARCH OBSTACLES 13

Implementing Fourth Generation Evaluations Using Software 13

Making Contact With Laboratory Researchers, Companies 14

Addressing Validity, Reliability With Consistency, Redundancy 15

Maintaining Survey Instrument Confidence, Adaptability .. 15

Generalizing to “Award-Winning” Situations ... 16

GOVERNMENT TRANSFER PROCESS - CORE ELEMENTS 17

Introduction .. 17

Government Laboratory .. 17

Research and Development .. 17

Technology Transfer ... 18

Interview Topics .. 18

Roles of Laboratory Researchers and Other Personnel ... 18

Technologies and Applications ... 19

University Involvement ... 20

Funding, Financing ... 20

Intellectual Property ... 21

Technology Transfer Mechanisms ... 23

User Groups ... 25

Barriers to Commercialization ... 26

Other Factors .. 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Benefits/Economic Impact/Outcomes</td>
<td>26</td>
</tr>
<tr>
<td>International Activity</td>
<td>28</td>
</tr>
<tr>
<td>Government Gains</td>
<td>28</td>
</tr>
<tr>
<td>Economic Development, Technical Assistance</td>
<td>28</td>
</tr>
<tr>
<td>Elapsed Time</td>
<td>28</td>
</tr>
<tr>
<td>SUMMARY AND DISSERTATION ORGANIZATION</td>
<td>29</td>
</tr>
<tr>
<td>II. LITERATURE REVIEW</td>
<td>30</td>
</tr>
<tr>
<td>SECTION ONE - THE CONTEXT</td>
<td>30</td>
</tr>
<tr>
<td>Science and Technology Policy Trends</td>
<td>30</td>
</tr>
<tr>
<td>End of the Cold War Called for New Missions</td>
<td>30</td>
</tr>
<tr>
<td>Competitiveness Spawned Interest in Technology Policy</td>
<td>33</td>
</tr>
<tr>
<td>Big Science Era Ended, Attention Turned to the Budget Deficit</td>
<td>37</td>
</tr>
<tr>
<td>Trends Affected Government Laboratory Policy</td>
<td>39</td>
</tr>
<tr>
<td>SECTION TWO - EVALUATING TECHNOLOGY TRANSFER</td>
<td>41</td>
</tr>
<tr>
<td>Introduction - Brief History, Current Issues</td>
<td>41</td>
</tr>
<tr>
<td>Evaluating Technology Transfer as Part of Broader R&D Programs</td>
<td>45</td>
</tr>
<tr>
<td>Econometric Studies of R&D</td>
<td>49</td>
</tr>
<tr>
<td>Evaluating Government Technology Transfer</td>
<td>52</td>
</tr>
<tr>
<td>NIST Programs, Laboratories Focused on Impact Evaluation</td>
<td>52</td>
</tr>
<tr>
<td>NASA Technology Utilization Assessment Began Early-on</td>
<td>54</td>
</tr>
<tr>
<td>Individual NASA Field Centers Initiated Projects</td>
<td>57</td>
</tr>
<tr>
<td>Department of Energy Evaluation Got Caught in Politics</td>
<td>59</td>
</tr>
<tr>
<td>Individual DOE Laboratories Initiated Projects</td>
<td>60</td>
</tr>
<tr>
<td>DOD Measured Laboratory Transfer, Examined Programs</td>
<td>62</td>
</tr>
<tr>
<td>Congress and GAO Examined Technology Transfer, Multi-Agency</td>
<td>63</td>
</tr>
<tr>
<td>Commerce Department Measured on Government-Wide Basis</td>
<td>65</td>
</tr>
<tr>
<td>Interagency Committee Attempted Consensus-Building</td>
<td>66</td>
</tr>
<tr>
<td>Federal Laboratory Consortium Contributed Reports</td>
<td>67</td>
</tr>
<tr>
<td>Outside Studies Compared or Combined Government, University</td>
<td>68</td>
</tr>
<tr>
<td>University Models for Technology Transfer Evaluation</td>
<td>72</td>
</tr>
<tr>
<td>Evaluation of Laboratory Incubators and Economic Development</td>
<td>75</td>
</tr>
<tr>
<td>Technology Transfer Metrics - Summary</td>
<td>76</td>
</tr>
<tr>
<td>OVERALL SUMMARY, CONCLUSION - STUDY FILLS GAP</td>
<td>77</td>
</tr>
<tr>
<td>III. PRE-LEGISLATION CASES</td>
<td>80</td>
</tr>
<tr>
<td>INTRODUCTION - LEVEL II ANALYSIS, PRE-LEGISLATION</td>
<td>80</td>
</tr>
<tr>
<td>Departments/Agencies and Technology Applications</td>
<td>80</td>
</tr>
<tr>
<td>Roles of Laboratory Researchers and Other Personnel</td>
<td>81</td>
</tr>
<tr>
<td>Intellectual Property</td>
<td>81</td>
</tr>
<tr>
<td>Technology Transfer Mechanisms</td>
<td>81</td>
</tr>
<tr>
<td>User Groups</td>
<td>82</td>
</tr>
</tbody>
</table>
User Benefits/Economic Impacts/Outcomes ... 82
Government Gains .. 82
Elapsed Time .. 82
SELECTED PRE-LEGISLATION CASES ... 83
Case 1 (1985) - Penetrometer for Seabed Classification/Measurement 83
Case 2 (1986) - Advanced Thermoplastic Polymer Material 88
Case 3 (1986) - Substance Tracer Technology .. 95
Case 4 (1986) - Slow-Release, Alginate-Based Herbicide/Pesticide 103
Case 5 (1986) - Controlled-Release, Chemically-Imbedded Material 116
Case 6 (1985) - Radiation Therapy Quality Assurance 128
PRE-LEGISLATION FINDINGS SUMMARY ... 138

IV. POST-LEGISLATION CASES .. 139
INTRODUCTION - LEVEL II ANALYSIS, POST-LEGISLATION 139
Departments/Agencies and Technology Applications 139
Roles of Laboratory Researchers and Other Personnel 140
Intellectual Property .. 141
Technology Transfer Mechanisms ... 141
User Benefits/Economic Impacts/Outcomes ... 142
Government Gains ... 143
Elapsed Time .. 144
Other Factors ... 144
SELECTED POST-LEGISLATION CASES ... 144
Case 1 (1993) - Laser-Based Method to Light Up Biological Samples 146
Case 2 (1993) - Voice Coder for Telecommunications 150
Case 3 (1992) - Paper Quality Tester ... 157
Case 4 (1993) - Variable-Frequency Microwave Oven 164
Case 5 (1992) - Gravity Meter ... 172
Case 6 (1992) - “Oatrim” Fat Substitute .. 181
Case 7 (1993) - Chemiluminescent “Light Sticks” ... 190
Case 8 (1992) - Artificial Heart Flow Diagnostics .. 197
POST-LEGISLATION FINDINGS SUMMARY .. 202

V. FINDINGS: TIME FRAME COMPARISONS .. 203
A. GOVERNMENT TECHNOLOGY TRANSFER IMPROVED 203
A.1 Roles - Researchers’ Produced More Prototypes, Laboratory Samples 204
A.2 University Involvement - Role Became More Institutionalized 204
A.3 Intellectual Property - Laboratory Patenting Increased 204
A.4 Technology Transfer Mechanisms - Researchers Had Increasingly
 Strong Opinions About Royalties... 205
A.5 User Groups... 206
 A.5(a) Small-Firm Involvement Increased ... 207
 A.5(b) Process Shifted from Technology Push to Market Pull 207
A.5(c) Users Narrowed from Broad Groups to Targeted Markets

A.6 User Benefits/Economic Impacts/Outcomes

A.6(a) Number of Products Increased

A.6(b) Sales Revenues Increased, Including International

A.6(c) Number of Spinoff Start-up Companies, Jobs Increased

A.6(d) Company, Product Failures Decreased

A.6(e) Dual Uses, Government Gains, Spinbacks Increased

A.7 Elapsed Time - Time to Market Decreased

B. CERTAIN ASPECTS DID NOT CHANGE

B.1 Roles, Technologies, Laboratories, Funding

B.1(a) Aspects of the Researchers’ Roles Were Consistent

B.1(b) Technologies Continued to Represent Diverse Areas

B.1(c) Laboratory Groups Remained Similar

B.1(d) Funding Combinations Remained Similar

B.2 Mechanisms - Licenses, CRADAs Predominated in Both Periods

B.3 User Benefits/Economic Impacts/Outcomes

B.3(a) Researchers, Partners Consistently Used Miscellaneous Indicators

B.3(b) Researchers, Partners Consistently Used Intangible Measures

B.4 International Activity - Laboratories Remained Uninterested in Foreign Patent Rights

B.5 Economic Development, Technical Assistance - American-Owned Companies Predominated in Both Time Frames, But Did Not Use Available Services

C. CHALLENGES TO TECHNOLOGY TRANSFER ENVIRONMENT

C.1 Roles - Technology Transfer, Research Functions Registered Tension

C.2 Barriers - Private Sector Commercialization Problems Increased

SUMMARY

VI. SUMMARY, IMPLICATIONS, ISSUES AND CONCLUSIONS

ASSESSING THE EFFECT OF THE LEGISLATION

Roles of the Laboratory Researchers and Other Personnel

Funding, Financing

Intellectual Property

Technology Transfer Mechanisms

User Groups

Barriers to Commercialization

User Benefits/Economic Impact/Outcomes

International Activity

Economic Development, Technical Assistance

LESSONS LEARNED - TECHNOLOGY TRANSFER EVALUATION

Experiment With a Greater Variety of Indicators