On Finding the Location of an Underwater Mobile Robot Using Optimization Techniques

by

Sai S. Tunuguntla

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN INDUSTRIAL AND SYSTEMS ENGINEERING

APPROVED:

________________________________________
Dr. Hanif D. Sherali, Chair

________________________________________
Dr. Charles F. Reinholtz  Dr. Sheldon H. Jacobson

August 12, 1996
Blacksburg, Virginia

Keywords: Nonlinear, Optimization, Pose, Robotics
On Finding the Location of an Underwater Mobile Robot Using Optimization Techniques

by

Sai S. Tunuguntla

Committee Chairman: Dr. Hanif D. Sherali

Industrial and Systems Engineering

(ABSTRACT)

This research aims at solving an engineering design problem encountered in the field of robotics using mathematical programming techniques. The problem addressed is an indispensable part of designing the operation of Ursula, an underwater mobile robot, and involves finding its location as it moves along the circumference of a nuclear reactor vessel. The study has been conducted with an intent to aid a laser based global positioning system to make this determination.

The physical nature of this problem enables it to be conceptualized as a position and orientation determination problem. Ursula tests the weldments in the reactor vessel, and its position and orientation needs to be found continuously in real-time. The kinematic errors in the setup and the use of a laser based positioning system distinguish this from traditional position and orientation determination problems. The aim of this research effort is to construct a suitable representative mathematical model for this problem, and to design and compare various solution methodologies that are computationally competitive, numerically stable, and accurate.
Dedicated

To my advisor Dr. Sherali and my supervisor Dr. Beaton
Acknowledgments

I would like to express my gratitude to the chairman of my advisory committee Dr. Hanif D. Sherali. His guidance and exceptional teaching capabilities have enhanced my technical capabilities and would continue to inspire me. I would like to thank other members of the committee, Dr. Charles F. Reinholtz and Dr. Sheldon H. Jacobson for their valuable guidance and useful suggestions. I would like to express my thanks to Dr. Paul Tidwell for being on the final examination committee, in the absence of Dr. Jacobson.

I would also like to thank Dr. Ravi Voruganti and Dr. Barry Fallon for their encouragement during the initial phase of the research. I thank Mr. Arief Suharko and other users of the Simopt lab for their cooperation.

I would like to express my gratitude to my supervisor Dr. Bob Beaton for providing me an opportunity to work for the Displays and Controls Lab, Virginia Tech. I thank Mr. John Deighan and other members of the group.

Finally, I would like to thank my family for their perennial support and some good friends for making my stay in Blacksburg a memorable one.
List of Tables

Table 5.1 Results of the Hooke and Jeeves Method 40
Table 5.2 Results of the Fletcher and Reeves Method 41
Table 5.3 Results of the Sherali and Ulular’s Method 41
Table 5.4 Results of the Quasi-Newton Method with BFGS Updates 41
Table 5.5 Results of the Test Problem 4.3.1 Using Different Solution Procedures 43
Table 5.6 Results of the Hooke and Jeeves Method 45
Table 5.7 Results of the Fletcher and Reeves Method 46
Table 5.8 Results of the Sherali and Ulular’s Method 48
Table 5.9 Results of the Quasi-Newton Method Using BFGS Updates 49
Table 5.10 Results of the Test Problem 4.3.2 Using Different Solution Procedures 51
Table 5.11 Results of the Hooke and Jeeves Method 53
Table 5.12 Results of the Fletcher and Reeves Method 53
Table 5.13 Results of the Sherali and Ulular’s Method 54
Table 5.14 Results of the Quasi-Newton Method Using BFGS Updates 55
Table 5.15 Results of the Golden Section method (Based on the Alternate Approach) 56
Table 5.16 Results of the Quadratic Interpolation Technique 57
# Table of Contents

1.0 Introduction 1

2.0 Literature Review 5

  2.1 Design and Development of Ursula 5
  2.2 Optimization Techniques in Robotic Control and Calibration 6
  2.3 Nonlinear Least Squares Problems 7
  2.4 Nonlinear Optimization Techniques 7

3.0 Modeling the Problem 9

  3.1 Reference Frames and Transformations 9
  3.2 Mathematical modeling of the problem 12
  3.3 Modeling for the errors in the setup 21

4.0 Solution Methodologies 25

  4.1 Solution Procedures 25
    4.1.1 One Dimensional Search Algorithms 26
    4.1.2 Multidimensional Search Algorithms 28
    4.1.3 Conjugate Gradient Methods 30
    4.1.4 Quasi-Newton Methods 32
  4.2 Redesigning the Solution Procedures 34
  4.3 Test Problems 35
    4.3.1 Testing the Model for the Laser Gun Pose Determination Problem 36
    4.3.2 Testing the Model for the Ursula Pose Determination Problem 36
    4.3.3 Standard Test Problems for the Search Procedures 36

5.0 Implementation Guidelines and Results 39
5.1 Solution Procedures 39
5.2 Laser Gun Pose Determination Problem 42
5.3 Ursula Location Determination Problem 50

6.0 Conclusions and Recommendations for Future Research 59

7.0 References 62

Appendices
Appendix A 65
Appendix B 66

Vita 67