Appendix C

Derivation of the Shrinking Sphere Model
DERIVATION OF THE SHRINKING SPHERE MODEL
(Rimstidt, personal communication)

The surface area of a sphere is

\[A = 4\pi r^2 \]

The volume of a sphere is

\[V = \frac{4}{3} \pi r^3 \]

The general relationship between the surface area and the volume is

\[A = b V^\frac{2}{3} \]

\[4\pi r^2 = b \left(\frac{4}{3} \pi r^3\right)^\frac{2}{3} \]

\[b = 4.84 \]

The volume, \(V \), of a material is defined as

\[V = n V_m \]

where \(V_m \) is the molar volume of a substance and \(n \) is the number of moles.

\[A = bn^\frac{2}{3} V_m^\frac{2}{3} \]

For a zeroth order rate law

\[\frac{dn}{dt} = -Ak \]

\[\frac{dn}{dt} = -b V_m^\frac{2}{3} kn^\frac{2}{3} \]
\[\int_0^\infty \frac{dn}{n^2} = -bV_m^2 k \int_0^t dt \]

\[-3n^\frac{1}{3} = -bV_m^2 k \Delta t \]

\[\Delta t = \frac{\frac{1}{3}n^\frac{1}{3}}{bV_m^\frac{2}{3}} \]

\[\Delta t = \frac{3V_m^\frac{1}{3}}{bV_m bk} \]

\[\Delta t = \frac{3r(\frac{4}{3})^\frac{1}{3} \pi^\frac{1}{3}}{V_m 4\pi^\frac{1}{3} (\frac{4}{3})^\frac{2}{3} k} \]

\[\Delta t = \frac{r}{V_m k} \]

Substituting for \(d = 2r \).

\[\Delta t = \frac{d}{2V_m k} \]