4. **Column Generation Algorithm and Indexed Shortest Path Problem**

This chapter and the next are concerned with the solution of the developed models in practice. The discussion in this chapter focuses on the mathematical algorithm proposed for solving the linear programming models LPIM and LPIM(TT) developed in the last chapter. It begins with a discussion on the limitations of the standard simplex method for solving large-sized linear programming problems. A Column Generation Algorithm (CGA) is then adopted to exploit the special structure of the model. In order to be consistent with other transportation models, an indexed-cost minimum path problem, and its linearized version, are proposed, and a suitable algorithm is then presented. The issues on how to implement the algorithm via a computer code will be presented in the next chapter.

4.1 **Limitations of the Standard Simplex Method**

Despite its success in theoretical research and in practical application, the standard simplex method is known to have certain limitations in solving large-sized linear programming problems. For the linear programming models developed so far, these limitations arise in the following aspects (Sivanandan 1991, Sherali *et al.* 1994a). 1) An explicit statement of the linear programming models LPI, LPIM, *etc.*, requires the enumeration of all possible paths between each O-D pair \((i, j) \in OD\). Although this is readily accomplished in theory, it is computationally prohibitive except for small-sized networks. 2) In addition, excessive computer storage will be necessary to store the path information as required by the simplex procedure. This also leads to a limitation for large-sized networks. 3) As an alternative, one can
consider the explicit generation of only Dial’s (1971) “efficient” paths. However, an example (Sivanandan 1991, Sherali et al. 1994a) shows the failure of this attempt to produce acceptable solutions in certain cases. Another alternative is to use some interior point algorithm, which is known to have polynomial-time complexity (Bazaraa et al. 1990, 1993). Although these algorithms might reduce the total number of iterations, they cannot overcome the other limitations mentioned above.

4.2 Decomposition Principle and Column Generation Technique

It is well known that the Dantzig-Wolfe decomposition technique, which is equivalent to Benders’ partitioning and Lagrangian relaxation for linear programming (Bazaraa et al., 1990), is often suitable for solving large-sized problems. The idea behind these techniques is to convert the large problem into one or more appropriately coordinated smaller problems of manageable size. When this principle is applied to the revised simplex method, in which the columns of the linear program are selectively generated, the procedure is known as a Column Generation Algorithm (CGA) (Lasdon 1970).

The theoretical background of CGA may be illustrated as follows. Consider the linear program

\[
\text{Minimize} \quad z = \sum_{j=1}^{n} c_j x_j \tag{4.1a}
\]

subject to \(\sum_{j=1}^{n} A_{j} x_j = b \) \tag{4.1b}

\(x \geq 0, \) \tag{4.1c}

where \(A_j, \ j=1, \ldots, n, \) and \(b \) are \(m (\text{<}n) \)-dimensional vectors. Assume that there is a basic feasible solution (BFS) \(x_B \) available, with an associated basis matrix \(B \) and
cost coefficient c_B. Then the simplex multiplier (dual vector) associated with this basis is given by

$$\pi = c_B B^{-1}. \quad [4.2]$$

Now, if the reduced cost coefficients $c_j - \pi A_j \geq 0$ for all of the nonbasic variables, then the optimal solution of the linear program [4.1] is at hand. On the other hand, if there is a k such that

$$\pi A_k - c_k = \max_j \pi A_j - c_j > 0,$$ \quad [4.3]

then the standard simplex method can be applied, by entering x_k into the basis through a pivot operation, and an adjacent (improved) basis can be found. For large-sized problems, finding the maximum in [4.3] by computing each $\pi A_j - c_j$ may be computational expensive. In some cases, however, these columns can be identified as vertices of another polytype (Bazaraa et al. 1990, Ch7). In such a case, the column to be entered into the basis can be chosen by solving the following subproblem

$$\max_{A_j \in S} \pi A_j - C_j. \quad [4.4]$$

The solutions of the subproblem are then sent to the master problem for pivoting and updating. These iterations continue until optimality (of the master problem) is reached. Note that the above CGA cannot be directly applied to the linear programming models formulated in the last chapter, and some modification is necessary to perform this task.

4.3 Choice of a Starting Basic Feasible Solution

The following two sections will develop a column generation scheme for solving the linear programming models established in the previous chapter. This section is concerned with the starting basic feasible solution (BFS) used by various simplex
implementations. For the sake of simplicity, only the model LPIM defined in [3.14] will be used for illustrative purposes. The other models are discussed in some remarks.

Introducing slack variables \(s_a \) in [3.14b] and \(t_a \) in [3.14c] for \(a \in A_v \), respectively, the linear program [3.14] can be rewritten as

\[
\text{LPIM: Minimize} \quad \sum_{(i,j) \in OD} \sum_{k=1}^{n_{ij}} \hat{c}_{ij}^k x_{ij}^k + M e_{A_v} \cdot y \quad [4.5a]
\]

subject to

\[
\sum_{(i,j) \in OD} \sum_{k=1}^{n_{ij}} (p_{ij}^k) a x_{ij}^k + y_a - s_a = \tilde{f}_a + \Lambda_a, \quad a \in A_v \quad [4.5b]
\]

\[
\sum_{(i,j) \in OD} \sum_{k=1}^{n_{ij}} (p_{ij}^k) a x_{ij}^k - y_a + t_a = \tilde{f}_a + \Lambda_a, \quad a \in A_v \quad [4.5c]
\]

\[
x \geq 0, \quad y \geq 0, \quad s \geq 0, \quad t \geq 0, \quad [4.5d]
\]

where, the penalized travel time \(\hat{c}_{ij}^k \) is given by [3.14e].

To solve the linear program [4.5] by using a simplex-based method, a starting Basic Feasible Solution (BFS) is needed. Depending on different viewpoints, the following three approaches may be considered for determining a starting BFS.

1) By setting \(y_a = \tilde{f}_a \) and \(t_a = 2\tilde{f}_a + \Lambda_a \), a starting BFS for solving [4.5] is already at hand. Both the primal and the dual problems corresponding to this BFS are very simple. The shortcoming of this choice of a starting BFS is that the corresponding objective value is very high.

2) Since the high cost variable \(y_a \) may be set to be zero for \(a \in A_v \) if and only if \(f_a \in [\tilde{f}_a, \tilde{f}_a + \Lambda_a] \), another choice of a starting BFS \((x_a, y_a, s_a, t_a), a \in A_v\) might be composed by using the following procedure. First, alter the flows on some links so that the assigned flows \(f_a, a \in A_v \), are conserved at each intermediate node and are as “close” to the lower-cost interval \([\tilde{f}_a, \tilde{f}_a + \Lambda_a]\)
as possible. Then find an O-D trip table on some possible paths so that the assigned flows match with the balanced flows. Finally purify the feasible solution obtained to a starting basic feasible solution (Bazaraa et al. 1990). However, this three-step procedure for tracing a starting BFS could itself be computational expensive, because of the possible occurrences of cyclic flows that require the above balancing-assignment procedures to be performed many times.

3) As an alternative, one may consider finding an O-D trip table first according to some information of the observed flows. Then, by assigning this O-D table to the corresponding paths, deleting the excess flows on links and setting the artificial variable y and slacks s and t correspondingly, a feasible solution can be obtained. Finally, by using the purification procedure, this feasible solution can be purified to a “better” basic feasible solution. For the purpose of finding a suitable feasible solution, the backtracing algorithm in the LP model (Sherali et al. 1994a) may be used, with some modification based on the following principles. 1) Preferably, alter the “flows” on those links having “missing volumes”, whenever possible, rather than on other links. 2) Preferably, alter the slacks s_a or t_a, whenever possible, rather than increase the high-cost variables y_a.

Essentially, the above three approaches work toward the same purpose. At a first glance, it seems that the procedures illustrated in approaches 2) and 3) are “better” than the one in 1), since they give a starting BFS having a lower objective value. But note the fact that the assignment-balancing approaches in 2) or 3) may be themselves regarded as some partial extreme point optimal search processes. Furthermore, the feasible solution found via the assignment-balancing process usually is not a basis, and the purification procedure may consume extra computational time. Moreover, a better starting point may not lead to an overall
4. Column Generation Algorithm and Indexed Shortest Path Problem

reduction in effort. More detailed discussion on how to choose an advanced starting BFS is presented later in Remark 4.3.

4.4 Modified Column Generation Algorithm

By using one of the starting BFS described in the last section, a basic feasible solution \((x, y, s, t)\) to the linear program [4.5] may be assumed to be available. The linear program is then solved by interactively pivoting those nonbasic variables with negative reduced costs into the basis until an optimum is reached. At each step, the BFS may be represented via a revised simplex tableau with \((\pi, \omega)\) being the corresponding set of simplex multipliers \(c_B B^{-1}\) associated with the constraints [4.5b] and [4.5c], respectively, where \(B\) is the available basis matrix, and \(c_B\) is the vector of basic variable cost coefficients. For artificial variables \(y_a\), slack variables \(s_a\) and \(t_a, a \in A\), the corresponding reduced cost is given by \((M - \pi_a + \omega_a), \pi_a, \) and \(-\omega_a\), respectively. If any of these is negative, then the corresponding variable is pivoted into the basis, and the main step is repeated. Hence, it may be assumed that no \(y\)-variable, \(s\)-variable and \(t\)-variable are enterable in the basis.

Therefore, the problem to be addressed here is how to price and enter the \(x\)-variables into the current basis, if they are enterable. If no such variable exists, then optimality is declared. Since the columns of the \(x\)-variables are not available in explicit form, there is a need to implicitly determine if any \(x_{ij}^k\) variable has a negative reduced cost and hence is enterable.

4.4.1 Column Generation Procedure

First of all, some remarks on the nature of general simplex-based methods are relevant. It is known that the simplex method is an extreme-point improving procedure. Also, in the context of column generation, it is convenient to use
Dantzig’s Rule for selecting entering variables. Here, the entering nonbasic variable is chosen from those having the minimum reduced cost, as shown in Section 4.2. With the help of some cycling prevention rule (Bazaraa et al. 1990), starting with any basic feasible solution and entering a variable having a negative reduced cost at each step will indeed give a finite-step algorithm. This remark is particularly important for solving the linear program [4.5], where finding an optimal solution of a subproblem such as [4.4] at each iteration is computationally expensive as well as memory intensive. Therefore, the column generation technique used for solving such a problem is modified according to the following principle: the entered nonbasic variable (in each pivoting iteration) may simply have a negative cost, and not necessary the most negative reduced cost.

According to the above discussion, the crucial problem faced for solving the linear program [4.5] is to find a criterion to verify if the obtained basic feasible solution is optimal, which in turn can be verified by checking if there are any \(x \) variables enterable into the current bases. This task will be addressed below.

For the sake of convenience, the cost coefficients \(c_a, a \in A \), may be assumed to be greater than or equal to 1 and integer, since the problem will remain unchanged by multiplying with a constant. Furthermore, the simplex multipliers \(\bar{\pi} \) and \(\bar{\omega} \) can be embedded into the \(E^{1[A]} \) space with zero extension, in the sense that the multipliers are set to be zero for those links \(a \) with missing volume, i.e.,

\[
\pi_a = 0, \quad \omega_a = 0, \quad \forall a \in A_x.
\]

[4.6]

Using this expanded notation, then for any given \((i, j) \in OD \) and \(k=1, \ldots, n_y \), the reduced cost for \(x_{ij}^k \), according to [3.6] and [4.5], is given by

\[
\tilde{c}_{ij}^k - \bar{\pi} \cdot p_{ij}^k - \bar{\omega} \cdot p_{ij}^k = (\tilde{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k
\begin{cases}
(\tilde{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k & \text{if } k \in \Pi_y \\
(M_i \bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k & \text{if } k \in \Pi_y
\end{cases}.
\]

[4.7]

This motivates the following lemma.
Lemma 4.1 For each \((i, j) \in OD\), consider the following two shortest (simple) path problems.

\[\text{SP}_{ij}^I: \quad \text{Minimize}\left\{ \left(\bar{c} - \bar{\pi} - \bar{\omega} \right) \cdot p_{ij}^k: \quad k = 1, \cdots, n_{ij} \right\} = \left(\bar{c} - \bar{\pi} - \bar{\omega} \right) \cdot p_{ij}^k \equiv v_{ij}^I \quad [4.8]\]

\[\text{SP}_{ij}^II: \quad \text{Minimize}\left\{ (M_i \bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k: \quad k = 1, \cdots, n_{ij} \right\} = (M_i \bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k \equiv v_{ij}^II \quad [4.9]\]

Suppose that [4.8] and [4.9] are solved, and \(k^+, v_{ij}^I, v_{ij}^II\) are obtained accordingly. Then the following statements are true.

(i) If \(v_{ij}^I \geq 0\), then no \(x_{ij}^k, k = 1, \cdots, n_{ij}\) is enterable in the current basis.

(ii) If \(v_{ij}^I < 0\) and \(k^+ \in \Pi_{ij}\), then \(x_{ij}^{k^+}\) is enterable in the current basis.

(iii) If \(v_{ij}^II < 0\), then \(x_{ij}^{k^+II}\) is enterable in the current basis.

(iv) If \(v_{ij}^II \geq 0\), then no \(x_{ij}^k, k \in \Pi_{ij}\) is enterable in the current basis.

Proof. Note that, from [3.7] and [4.8], the reduced cost for \(x_{ij}^k\) is given by \(\left(\bar{c} - \bar{\pi} - \bar{\omega} \right) \cdot p_{ij}^k\), and \((M_i \bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k \geq (\bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k \geq (\bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k = v_{ij}^I\), the lemma is straightforward from the definitions of \(v_{ij}^I, v_{ij}^II\) and \(\Pi_{ij}\).

Remark 4.1 Lemma 4.1 does not exclude all of the possibilities for whether all of the \(x_{ij}^k\)-variables are enterable in the current basis. For example, when \(v_{ij}^I < 0\) but \(k^+ \notin \Pi_{ij}\), it may happen that there exists \(k \in \Pi_{ij}\) and \(v_{ij}^I < (\bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_{ij}^k < 0\), so that \(x_{ij}^k\) is enterable in the current basis. This situation will be considered in Lemma 4.2 and Remark 4.4.

Remark 4.2 Both shortest path problems \(\text{SP}_{ij}^I\) and \(\text{SP}_{ij}^II\) have mixed-sign cost coefficients, and might contain negative cost circuits which are reachable from node \(i\). In such a case, the problem of finding a shortest simple path is NP-complete. Although a branch-and-bound routine (Bazaraa et al. 1990) could be used to solve this shortest
path problem whenever the shortest path routine encounters a negative cost circuit, other less expensive, though heuristic, methods could also be employed. The backtracing algorithm developed in Sherali et al. (1994) will be modified for this purpose. Consider the formulation of a minimum cost network flow programming problem with the link cost vector given by \((\bar{c} - \bar{\pi} - \bar{\omega})\), with a supply of \(|D|\) at node \(i\), a demand of one at each node \(j \in D\), and with an upper bound of \(|D|\) on the flow on each link \(a \in A\). Using the NETFLO routine (Kennington and Helgason 1980), an optimal solution for this bounded network flow programming problem can be found very efficiently. In the case of negative circuits, the resulting paths may be identified, along with any existing loop flows, using the backtracing routine as addressed in Sherali et al.(1994a). Assuming these to be the shortest simple paths, Lemma 4.1 can now be applied.

Remark 4.3 Lemma 4.1 provides an implicit way for pricing the variable \(x_{ij}^k\) for \(k \notin \Pi_{ij}\), but it does not exclude all of the possible \(k \in \{1, \cdots, n_y\}\). Remark 3.2 declares that paths in \(\Pi_{ij}\) could be found by checking their costs. The following lemma gives an alternative way for determining path \(k \in \Pi_{ij}\) with negative reduced cost, which is hoped to improve the efficiency of pivoting for solving the linear program [4.5].

Lemma 4.2 (Sherali et al. 1994a) For each \((i, j) \in OD\), consider the following shortest (simple) path problem.

\[
\text{SP}_{ij}^{\text{III}}: \quad \text{Minimize}\left\{ (M_2 \bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_y^k : k = 1, \cdots, n_y \right\} = (M_2 \bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_y^k \tag{4.10a}
\]

where

\[
M_2 = \sum_{a \in A} (|\pi_a| + |\omega_a|) + 1, \quad \text{and let } v_{ij}^{\text{III}} = (\bar{c} - \bar{\pi} - \bar{\omega}) \cdot p_y^k. \tag{4.10b}
\]

Then the solution of [4.10] yields a path \(k^\circ \in \Pi_{ij}\). Furthermore, if \(v_{ij}^{\text{III}} < 0\), then \(x_{ij}^{k^\circ}\) is enterable in the current basis of [4.5] with reduced cost of \(v_{ij}^{\text{III}} < 0\).
The lemma can be proved in the same manner as in (Sherali et al. 1994a) and its detail is omitted.

4.4.2 Summary of Column Generation Algorithm for Solving LPIM

Step 0 (Initialization and Starting Basic Feasible Solution).

1. For any link \(a \) with missing volume, \(a \in A_v \), assign an “observed cost” \(\bar{c}_a(v_a) \) on this link, as described in Section 3.5.

2. For each \(i \in O \), using \(\bar{c} \) as the (positive) link cost vector and Dijkstra’s routine, find the shortest paths for all \(j \in D \) and hence determine \(c^{*}_{ij} = \min \{ c^k_{ij} : k = 1, \cdots, n_j \} \) as well as the “band set” \(\Pi_{ij} \equiv \{ k : c^*_{ij} \leq c^k_{ij} \leq c^*_{ij} + \Delta_{ij} \} \) for each \((i, j) \in OD \).

3. Denote \(\bar{c}_{total} \equiv \bar{c} \cdot \bar{f} \) and define \(F_E = \bar{c} \cdot x + M_1e_{\chi} \cdot y \). Let \(M_1 = 2 \) and use \((x = 0, y = \bar{f}, s = 0, t = 2 \bar{f} + \bar{\Lambda}) \) as the starting basic feasible solution. Since \(B = \left(\begin{array}{cc} I_{|\chi|} & 0 \\ -I_{|\chi|} & I_{|\chi|} \end{array} \right) \) and \(c_B = (Me_{\chi}, \bar{0}_{|\chi|}) \), let \((\bar{\pi}, \bar{\mu}) \) be the set of simplex multipliers \(c_B B^{-1} \) corresponding to (4.5b)-(4.5c), then it follows that \(\bar{\pi} = Me_{\chi} \) and \(\bar{\mu} = 0 \).

4. Now the initial simplex tableau has been constructed. Initializing the iteration counter as \(k = 1 \), proceed to Step 1.

Step 1 (Pricing artificial and slack variables \((y, s, t)\)).

Compute \(\nu^0_y, \nu^0_s \) and \(\nu^0_t \) as follows.
\[v_{0}^{0} = M + \min \{-\pi_{a} + \omega_{a}, \ a \in A_{r} \} \]

\[v_{s}^{0} = \min \{ \pi_{a}, \ a \in A_{r} \} \]

\[v_{t}^{0} = \min \{-\omega_{a}, \ a \in A_{r} \} \]

Let \(v^{0} = \min \{ v_{y}^{0}, v_{s}^{0}, v_{t}^{0} \} \). If \(v^{0} \geq 0 \), then proceed to Step 2. Otherwise, let

\[
e_{a} = (0, \ldots, 0, 1, 0, 0, \ldots, 0) \quad \text{and} \quad \tilde{e}_{a} = (0, \ldots, 0, 1, 0, 0, \ldots, 0).\]

If \(v^{0} = v_{y}^{0} \equiv M - \pi_{a} + \omega_{a} \), then set \(z_{k} = y_{a}^{*}, \ v_{k} = v^{0}, \) and \(y_{k} = \tilde{e}_{a}^{*}, \) and go to Step 4.

Else if \(v^{0} = v_{s}^{0} \equiv \pi_{a} \), then set \(z_{k} = s_{a}^{*}, \ v_{k} = v^{0}, \) \(y_{k} = -e_{a}^{*}, \) and execute Step 4.

Final, if \(v^{0} = v_{t}^{0} \equiv -\omega_{a} \), then set \(z_{k} = t_{a}^{*}, \ v_{k} = v^{0}, \) \(y_{k} = e_{|A_{r}|+a}^{*}, \) and proceed to Step 4.

Step 2 (Pricing \(x_{ij}^{k} \) variables for \(k \in \Pi_{y}, \ (i, j) \in OD \), and \(\Delta \)-equilibrium check).

For each \(i \in O \), solve the shortest path problem \(SP_{y}^{i} \) given by [4.8], for all \(j \in D \), as in Remarks 4.1 and 4.2. If there is a \(k^{*} \in \Pi_{y} \) so that \(v_{ij}^{k} = (\tilde{c} - \pi - \omega) \cdot p_{ij}^{k^{*}} < 0 \), then set \(z_{k} = x_{ij}^{k^{*}}, \ v_{k} = v_{ij}^{k}, \) and execute Step 4. Else, if \(F_{E}(x, y) = \tilde{c}_{\text{total}} \), then a \(\Delta \)-equilibrium optimal solution is detected. Otherwise, proceed to Step 3.

Step 3 (Pricing \(x_{ij}^{k} \) variables for \(k \notin \Pi_{y}, \ (i, j) \in OD \), and termination check).

For each \(i \in O \), solve the shortest path problem \(SP_{y}^{ii} \) given by [4.9], for all \(j \in D \), as in Remarks 4.1. If there is a \(k^{**} \in \Pi_{y} \) such that \(v_{ij}^{ii} = (M, \tilde{c} - \pi - \omega) \cdot p_{ij}^{k^{**}} < 0 \), then set \(z_{k} = x_{ij}^{k^{**}}, \ v_{k} = v_{ij}^{ii}, \) and execute Step 4. Else, terminate the algorithm.
Step 4 (Updating primal and dual solutions).

Compute the updated column $B^{-1}y_k$ of the (entering) nonbasic variable z_k with reduced cost $v_k < 0$, pivot it into the basis, and hence update the basic feasible solution, the basis inverse, and dual vector $(\bar{\pi}, \bar{\omega})$ of the simplex multipliers. Increment k by one, and return to Step 1.

Remark 4.4 In certain cases, changing the order of the Steps 1--Step 4 may be useful in order to decrease the execution time. For example, because of the special choice of the BFS in Step 0, it is expected that there will be no artificial variables or slacks enterable into the current basis in the first few iterations. Furthermore, it is not necessary to use the real optimal solution for all $(i, j) \in OD$ in Steps 2-3 at each iteration. Therefore, in the first $|A_v|$-iterations, the pricing-searching process for enterable variables will use the order of Steps 2-3-1-4, and only some “good” (not necessarily best) enterable variables will be used for this purpose. In such a way, the resulting (partial) optimal solution may be regarded as a new advanced starting BFS. Note that this approach may be better than the other starting BFS methods described in Section 4.3, since the purification procedure from an arbitrary feasible solution to a basic feasible solution has been avoided in this process.

4.5 Column Generation Algorithm for Solving LPIM(TT)

The above algorithm can be easily adopted to solve the linear program LPIM(TT) defined by [3.15]. First, Introduce slack variables s and t as before. Then the linear program LPIM(TT) may be rewritten as

\[
\text{LPIM(TT): Minimize } \sum_{(i, j) \in OD} \sum_{k=1}^{n_{ij}} \tilde{c}_{ij}^k x_{ij}^k + M e_{A_y} \cdot y + M_{\sigma} \sum_{(i, j) \in OD} (Y_{ij}^+ + Y_{ij}^-) \quad [4.11a]
\]

subject to \([4.5b], [4.5c], [3.15d]\) and \([3.15e]\).
Given a revised simplex tableau, let \((\bar{\pi}, \bar{\omega}, \bar{\mu})\) be the corresponding set of simplex multipliers \(c_B B^{-1}\) associated with the constraints [4.5b], [4.5c] and [3.14d], respectively. Then the above CGA may be adopted to solve LPIM(TT) with the following modifications.

1. In **Step 0** (Initialization), use \((x = 0, y = \bar{f}, s = 0, t = 2 \bar{f} + \bar{\Lambda}, Y^+ = \bar{Q}, Y^- = 0)\) as the starting BFS. Then since \(B = \begin{pmatrix} I_{|A|} & 0 & 0 \\ -I_{|A|} & 0 & 0 \\ 0 & 0 & I_{|\bar{\omega}|} \end{pmatrix}\) and, \(c_B = (Me_{A}, \bar{\omega}_{|A|}, Me_{\bar{\omega}})\), it follows that \(\bar{\pi} = Me_{|A|} \cdot \bar{\omega} = 0\), and \(\bar{\mu} = Me_{\bar{\omega}}\).

2. In **Step 2** (Pricing artificial and slack variables), compute \(\nu^0, \nu_-^0\) as,

\[
\nu_+^0 = M_\sigma + \min \{- \bar{\mu}_a, a \in A, \nu_-^0 = M_\sigma + \min \{ \bar{\mu}_a, a \in A \}.
\]

Let \(\nu^0 = \min \{\nu^0_y, \nu^0_y, \nu^0_v, \nu^0_v, \nu^0_v\}\). If \(\nu^0 \geq 0\), then proceed to Step 2. Otherwise, in addition to the case discussed in previous situation, if \(\nu^0 = \nu_+^0 \equiv M_\sigma - \bar{\mu}_{(i,j)}\), then set \(z_k = Y^+(i,j), \nu_k = \nu^0, \) and \(y_k = \nu_2^0 (i,j)\), and go to Step 4; else if \(\nu^0 = \nu_-^0 \equiv M_\sigma - \bar{\mu}_{(i,j)}\), then set \(z_k = Y^-(i,j), \nu_k = \nu^0, \) and \(y_k = -\nu_2^0 (i,j)\), and go to Step 4.

3. The procedure in **Step 2** and **Step 3** need to be modified as follows. Instead of solving the linear programs \(SP_{ij}^1\) and \(SP_{ij}^2\) defined by [4.8] and [4.9], consider the following linear programs:

\[
\text{Minimize} \{(\bar{c} - \bar{\pi} - \bar{\omega} - \bar{\mu}) \cdot p^{k}_{ij} : k \in \Pi_{ij}\} = (\bar{c} - \bar{\pi} - \bar{\omega} - \bar{\mu}) \cdot p^{k'}_{ij} \equiv \nu^I_{ij} \quad [4.11a]
\]

\[
\text{Minimize} \{(M_i \bar{c} - \bar{\pi} - \bar{\omega} - \bar{\mu}) \cdot p^{k}_{ij} : k \notin \Pi_{ij}\} = (M_i \bar{c} - \bar{\pi} - \bar{\omega} - \bar{\mu}) \cdot p^{k''}_{ij} \equiv \nu^I_{ij} \quad [4.11b]
\]

Then the enterable variables in Step 2 and Step 3 can be changed correspondingly. The detail is straightforward and hence omitted.
Remark 4.5 Obviously, the comments on the choice of a starting BFS discussed in Remark 4.4 are applicable to the case of solving LPIM(TT) as well.

Remark 4.6 (Advanced Starting BFS). Alternatively, some advanced starting basic feasible solution may be employed for solving the linear programming problem LPIM(TT). These advanced BFSs could be chosen based on the following facts. 1) The variables Y_{ij}^+, Y_{ij}^- in LPIM(TT) only occur separately in the objective function and the constraint [3.13e]; 2) if (x, y, s, t) is a BFS for LPIM, then there exists $(Y^+, Y^-) \geq 0$, $Y^+ \cdot Y^- \geq 0$, such that (x, y, s, t, Y^+, Y^-) is a BFS for LPIM(TT). In particular, when the linear program LPIM is solved, then the resulting solution can be “updated” to be used as a starting BFS for solving LPIM(TT). This new starting BFS, in general, should be much “better” than the one chosen by using the method discussed in the previous remark. Moreover, even if the aim is to only solve LPIM(TT), it could still be a good idea to solve LPIM first, and modify the resulting solution to obtain an advanced starting BFS for solving LPIM(TT). Because of the smaller dimensional size of LPIM, this approach could possibly reduce the actual computational cost of solving the problem LPIM(TT).

4.6 Network Specification and a Shortest Path Algorithm

The minimum path problem plays an essential role in determining the cost coefficients of the objective function for both models LPIM and LPIM(TT). As indicated in the last two sections, the modified column generation algorithm for solving both problems LPIM and LPIM(TT) starts with finding the shortest path costs for each O-D pair. This section is concerned with finding these costs.
4.6.1 Network Restriction and Path Cost

In order to be consistent with other popular transportation models, the definition of feasibility for a path in a given network needs to be further refined. In addition to the restriction that a path should be a simple noncircuit, the following two restrictions may be also applied. 1) There are no inter-zonal trips for each given zone of the network, that is, there is no trip from a given zone to itself. 2) For each given O-D pair, any passing-through-zone paths in the network from the Origin zone to the Destination zone is highly undesired, and prohibited, unless there is no other kind of simple noncircuit. The first restriction is basically a natural extension of a simple noncircuit. The second requirement is used for avoiding the ambiguity on how to explain the definition of a trip in certain special cases as well as being consistent with the special structure of some networks.

Different attempts have been make to implement the second restriction, such as artificially giving a high cost for the centroid connectors (CTR, 1996), eliminating those passing-through-centroid paths (Bromage 1993). In the following, an indexed distance between an O-D pair is introduced for systematically dealing with the cost of a centroid connector.

4.6.2 Indexed Path Cost

For a given network, the degree of a link is defined as the number (0, 1, or 2) of from- and to-nodes of the link which are centroids of the network. Similarly, the degree of a path in the network is defined as the summation of the degrees of its member links (arcs). In order to avoid passing-through-centroid paths, as proposed in the last subsection, the following hypothesis on the cost of the path is applied. For any given two paths from the same origin node to the same destination node, the path that has a higher degree possesses the higher cost. Furthermore, If these...
two paths have the same degree, then the path that has a higher non-centroid cost possesses the higher cost.

The above hypotheses can be expressed symbolically. Instead of using ordinary real numbers, introduce a two-parameter pair, say \(\tilde{c}(P) = (d, c) \), to denote the cost of a given path \(P = \{ (i_o, i_1), (i_1, i_2), \ldots, (i_{p-1}, i_p) \} \) in a network. In this expression, the first parameter, \(d \), is an integer indicating the degree of the path \(P \), and the second parameter, \(c \), is a real number denoting the total cost (in the ordinary sense) of those links which are non-centroid-connector arcs of the path. The integer-real number pair that is used to express the cost of a path in a given network will be called the \textit{indexed-cost} of the path. Note that an infeasible path can also be thought of as a path having infinite order. In particular, the cost of a link from a node \(i \) to a node \(j \) is given by

\[
\tilde{c}^{(1)}_{ij} = \begin{cases}
(\infty, 0) & \text{if the link is infeasible} \\
(l_{ij}, 0) & \text{if the link is a non-centroid-connector with a real cost } l_{ij} \\
(1, 0) & \text{if one and only one of } i \text{ and } j \text{ is a centroid} \\
(2, 0) & \text{if it is a centroid connector and both } i \text{ and } j \text{ are centroids.}
\end{cases}
\]

[4.12]

\[\text{Figure 4.1. An ordinary network with costs measured in real numbers.}\]
To illustrate this notation more clearly, consider an example network shown in Figure 4.1, where the link costs are indicated by using regular real numbers.

For the same network, if its link costs are indicated via the indexed-cost coefficients, then the resulting costs will be changed as shown in Figure 4.2.

![Figure 4.2](image)

Figure 4.2. The network of Figure 4.1, using the indexed link cost notation.

Given a network, $P = \{(i_o, i_1), (i_1, i_2), \ldots, (i_{p-1}, i_p)\}$ and $Q = \{(j_0, j_1), \ldots, (j_{q-1}, j_q)\}$ are two adjacent paths if $i_p = j_0$. Suppose that their indexed costs are $\tilde{c}(P) = (p_1, p_2)$ and $\tilde{c}(Q) = (q_1, q_2)$, respectively. If circuit paths are allowed in the network, then it can be inductively proved that the followed-up summation of P and Q, denoted as $P \boxplus Q = \{(i_o, i_1), (i_1, i_2), \ldots, (i_{p-1}, i_p), (j_0, j_1), \ldots, (j_{q-1}, j_q)\}$, is a new path with indexed cost given by

$$\tilde{c}(P \boxplus Q) = \tilde{c}(P) \boxplus \tilde{c}(Q) = (p_1, p_2) \boxplus (q_1, q_2) = (p_1 + q_1, p_2 + q_2).$$

Because only simply feasible paths are considered in this research, the above expression is not correct when a circuit arises in the new resulting path. In this case, a circuit will be considered as an infeasible path. Therefore, the indexed cost of the resulting path should be redefined as
It can be shown that, if infeasible paths (including circuits) are also allowed in the network, then the set of all paths in the network equipped with the followed-up summation operation \oplus becomes a semigroup. Moreover, this semigroup is non-commutative. If there is at least one feasible link in the network, then the subset consisting of all infeasible paths becomes a proper (double-side) idea of the semigroup. Obviously, the algebraic property of the derived semigroup depends only on the structure of the underlying network, and is independent of the definition of the cost function defined on it.

Finally, in order to implement the hypothesis for ordering relations for the costs among different paths, define the ordering for the indexed cost as

\[
(a_1, a_2) > (b_1, b_2) \iff (a_1 > b_1) \text{ or } (a_1 = b_1 \text{ and } a_2 > b_2) \quad [4.14a]
\]

and

\[
(a_1, a_2) = (b_1, b_2) \iff (a_1 = b_1 \text{ and } a_2 = b_2). \quad [4.14b]
\]

[4.14a]--[4.14b] define a complete order on the underlying domain.

4.6.3 Shortest Path Problem with Indexed Costs

The shortest path, or minimum cost, problem is one of the most well studied problems in Operations Research. For a given network G with m nodes, n arcs, and a cost c_{ij} associated with each arc (i, j) in G, the shortest path problem is to find the shortest (least costly) path from node 1 to node m in G. The cost of the path is the sum of the costs on the arcs in the path.
Usually, the cost coefficients of the arcs are real numbers, and the shortest path problem can be converted into a linear programming problem that automatically yields \{0,1\}-values for the decision (arc-choice) variables [Bazaraa, et al., 1990]. In the case that the costs of the arcs are measured with the indexed cost, this conversion is still formally true, except that the coefficients of the objective (function) in the linear program now are denoted with indexed distances. Furthermore, the most commonly used algorithms for solving the shortest path problem having real costs can also be slightly modified to solve the shortest path problem with indexed-cost coefficients. The following examples show how to modify two widely used algorithms.

A. Dijkstra’s Algorithm with Indexed Costs

This algorithm is a modified version of Dijkstra’s algorithm for the case when all costs are nonnegative real numbers. The method automatically yields the shortest path from node 1 to all of the other nodes.

INITIALIZATION STEP

Set $w'_i = (0,0)$ and let $X = \{1\}$.

MAIN STEP

Let $\bar{X} = N - X$, where N is the set of all nodes, and consider the arcs in the set $(X, \bar{X}) = \{(i, j): i \in X, j \in \bar{X}\}$. Let

$$w_i' + \bar{c}^{(1)}_{pq} = \min_{(i,j) \in (X,\bar{X})} \{w'_i + \bar{c}^{(1)}_{ij}\}, \tag{4.15}$$

where \(\bar{c}^{(1)}_{ij}\) is the indexed link cost from i to j as given by [4.12], and the minimum is taken according to the relations defined in [4.13a]-[4.13b]. Set $w_q' = w_p' + \bar{c}^{(1)}_{pq}$ and
place node q in X. Repeat the main step exactly $m-1$ times (including the first time) and then stop; the optimal solution is at hand.

The algorithm above can be validated to produce an optimal solution in the same manner as for the case of real number costs [Bazaraa et al., 1990], and the detailed proof is omitted.

As an example, consider the network shown in Figure 4.2. By using the algorithm above, Figure 4.3 presents a complete solution for this example. The darkened arcs are those used in the selection of the node to be added to X at each iteration. They can be used to trace the shortest path from node 1 to any given node i.

![Figure 4.3](image)

Figure 4.3 . A set of shortest paths using indexed costs.

If the network is not rescaled, then Figure 4.4 gives a set of shortest paths corresponding to the original network (with real costs) from node 1 to all of the other nodes.
B. An Algorithm for Determining the Minimum Costs for all Node Pairs

The Dijkstra’s algorithm studied above determines all of the shortest paths from a given node to all of the other nodes each time. The following algorithm will produce all of the costs of shortest paths for all possible node pairs.

First, define the 1-step (minimum) cost matrix $C^{(1)} = (\tilde{c}_{ij}^{(1)})_{m \times m}$, where, for an arbitrary node pair (i, j), the entry $\tilde{c}_{ij}^{(1)}$ of the matrix $C^{(1)}$ is given by [4.12]. Next, for $r = 2, \ldots, m - 1$, define the n-step minimum cost matrix $C^{(r)} = C^{(r-1)} \cdot C^{(1)}$. Here, for two given cost matrices $A = (\tilde{a}_{ij})_{m \times l}$ and $B = (\tilde{b}_{ij})_{l \times n}$, define their “product” matrix $C = A \cdot B = (\tilde{c}_{ij})_{m \times n}$ as

$$\tilde{c}_{ij} = \min_{k=1, \ldots, l} (\tilde{a}_{ik} + \tilde{b}_{kj}), \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.$$ \[4.16a\]

Where, the summation operation “$+$” is as defined in 4.13. For each entry $\tilde{c}_{ij}^{(r)}$ of $C^{(r)}$, if its order is finite, it gives the cost of the shortest path from node i to j consisting exactly of r links (or traveled in exactly r steps). Finally, for given cost
matrices \(X = (x_{ij})_{m \times m} \) and \(Y = (y_{ij})_{m \times m} \), define their “summation” matrix \(Z = X \oplus Y = (z_{ij})_{m \times m} \) as \(z_{ij} = \min(x_{ij}, y_{ij}) \) for \(i, j = 1, 2, \ldots, m \). Let

\[
C_{\min} = (c_{ij}^{\min}) = C^{(1)} \oplus C^{(2)} \oplus C^{(3)} \oplus \cdots \oplus C^{(m)}, \quad [4.16b]
\]

then, its entries are given by

\[
c_{ij}^{\min} = \min\{c_{ij}^{(1)}, c_{ij}^{(2)}, \cdots, c_{ij}^{(m)}\}, \quad i, j = 1, 2, \ldots, m \quad [4.16c]
\]

Furthermore, \(c_{ij}^{\min} \) is the cost of a shortest path from node \(i \) to node \(j \).

Remark 4.7 (Indexed costs of infeasible paths) *In above algorithms, the indexed costs for those infeasible links are set to be infinite. In real computer coding, however, the infinite is usually substituted with a “big number”. Since no circuits are allowed in the definition of paths, there are at most \(m - 1 \) links in a feasible path, where \(m \) is the total number of nodes in the network. Furthermore, the degree for any given link can be at most 2. Therefore, the number \(2m \) will be used as the degree for infeasible links or paths.*

4.6.4 Linearization and Rescaling Indexed Costs

The indexed cost defined above is highly suitable for the minimum path problem, as indicated by the algorithm in Section 4.6.3, in addition to satisfying the restrictions stated in the beginning of Section 4.6.2. On the other hand, from its definition, this indexed cost function has its range not included in the ordinary real number system. Moreover, it even does not result in a linear space. Since the major objective used in this research is based on the linear programming approach, there is a need to convert these indexed cost functions into real (ranged) functions in the ordinary sense, in addition to satisfying the restrictions of Section 4.6.2 to a certain extent.

The indexed cost function can be converted into real functions by using the following linearization method. Suppose that, by using the algorithms described in
last section, the minimum path problem (of indexed type function) has a set of solutions \(\{ (d_{ij}^{(\text{min})}, l_{ij}^{(\text{min})}), i, j = 1, 2, \cdots \} \). Then the cost on a centroid connector of degree 1 may be defined as

\[
c_{\text{centroid}} = 0.1 + \frac{1}{2} \max\{l_{ij}^{(\text{min})}, i, j = 1, \cdots, m, i \neq j\}
\] \[4.17a\]

and the cost of a path from node \(i \) to node \(j \), which has indexed-cost \((d_{ij}, l_{ij})\), is given by

\[
c_{ij} = d_{ij} \cdot c_{\text{centroid}} + l_{ij}.
\] \[4.17b\]

If a path \(\tilde{P}_{ij} \) from node \(i \) to node \(j \) is a shortest path measured with indexed-cost, by definition, any other path, say \(P_{ij} \), which also starts from node \(i \) and ends to node \(j \) has at least the same degree as \(\tilde{P}_{ij} \). If they have the same degree, then the total cost \(l_{ij} \) of those non-centroid-connector links in \(P_{ij} \) is at least as large as the total cost \(l_{ij} \) of the non-centroid-connector links in \(\tilde{P}_{ij} \). Noting that \(c_{\text{centroid}} \) in \[4.17b\] is a constant, this implies that the cost of path \(P_{ij} \) is not lesser than the cost of \(\tilde{P}_{ij} \) even measured with the cost function defined in \[4.17\]. On the other hand, if they do not have the same degree, which means that the path \(P_{ij} \) passes at least one more centroid as \(\tilde{P}_{ij} \) does. Since an extra passing-through-centroid path increases the degree by at least 2, \[4.17\] implies that the cost of \(P_{ij} \) is larger than the cost of \(\tilde{P}_{ij} \) when the cost is defined by \[4.17\]. That is, a shortest path measured with indexed cost is also a shortest path measured with the cost given by \[4.17\]. Similarly, the inverse relation can be proved to be true. This gives the following lemma.

\textbf{Lemma 4.3} For any link \(a \in A \), define the cost function \(c_{a} \) on this link by
where $c_a(v_a)$ is given by [3.3] and c_{centroid} is defined by [4.17a]. Then the minimum path problem with the indexed cost function, as described in Sec. 4.6.2, is equivalent to the minimum path problem with the cost function given by [4.17c], in the sense that they share the same solution set of paths.

Remark 4.8 (Cost function) *In the light of Lemma 4.3 and discussions in Sec. 3.5, the set of cost functions c_a, $a \in A$, could be determined in the following steps.*

Step1) *Use the BPR Equation (4.3) to determine the costs of those non-centroid connector links on which link volumes are available;*

Step2) *Assign volumes to those non-centroid connector links with missing volumes according to the discussion in Chapter 3, and compute the costs on these links by using the BPR equation;*

Step3) *Find the minimum path for each O-D pair by using the indexed cost as discussed in the last section, and determine the cost function c_a for each centroid connector a in terms of [4.17a];*

Step4) *Finally, the non-penalized cost function c_{ij}, for each O-D pair $(i, j) \in OD$, is given by [4.17b].*