The Analysis and Creation of Track Irregularities Using TRAKVU

by

Kenneth P. Kramp

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Mechanical Engineering

Approved:

Mehdi Ahmadian, Chairman

Daniel J. Inman

Alfred L. Wicks

June 30, 1998
Blacksburg, Virginia

Keywords: Railroad, Rail, Track, Irregularity, Geometry, TRAKVU, NUCARS, Model, Kramp
The accuracy of the results from a rail vehicle dynamic model is dependent on the realism of the track input to the model. An important part of the track input is the irregularities that exist on actual track. This study analyzes the irregularities inherent in railroad track geometry data, and provides an analytical method for creating track data with the irregularities for use as the input to a dynamic model.

Track data, measured from various classes of track, was examined using statistical and frequency analysis techniques to identify any similarities in the characteristics of the irregularities. The results showed that each class of track had a distinctive value for the standard deviation of the alignment and profile data. It was also determined that the frequency content of all the tracks was contained within a common bandwidth. The track irregularities could then be generated with the same characteristics as an actual track.

The method for creating the track irregularities was then programmed into TRAKVU. TRAKVU is a track preprocessor used in conjunction with NUCARS, a railcar dynamic modeling program\(^1\). TRAKVU enables users to create track data and apply the appropriate irregularities so that the track will have the characteristics of the desired class of track.

A validation was then performed to determine how well track created in TRAKVU simulated actual tracks. The statistical and frequency characteristics of created tracks were compared directly with actual tracks. Created track was also used as the input to a dynamic model. The predicted vehicle response was then compared to the actual vehicle response and the predicted vehicle response using measured track data as the input. The results from the validation showed that the created track performed as well as the measured track in providing the input to the model. Although the predicted response using the created track did not compare as well with the actual vehicle response, this result could be attributed to inaccuracies in the model.

\(^1\) NUCARS and TRAKVU are copyrighted property of the Association of American Railroads.
Acknowledgements

I would like to say thank you to my advisor, Dr. Mehdi Ahmadian, for his help and encouragement throughout my time working with him in the Mechanical Engineering Department. I would also like to thank Dr. Daniel J. Inman and Dr. Alfred L. Wicks for serving on my graduate committee, and Drs. Douglas J. Nelson and Walter F. O’Brien for sitting in for my graduate committee on my defense.

I would also like to thank the Association of American Railroads, Transportation Technology Center, Inc. (TTCI) for their generous support in funding this study. Special thanks are due to Mr. Mark Dembosky, Mr. Darrell Iller, Mr. Curt Urban, and Ms. Beatrice Rael at TTCI for their support and technical assistance throughout the study. I would also like to extend thanks to Mr. Rich Inman and Mr. Kevin Kesler at ENSCO, Inc. for their support and help with decoding the data files for this study.

The financial and administrative support provided by the Department of Mechanical Engineering and the Center for Transportation Research (CTR) at Virginia Tech, in particular Ms. Trina Murphy, is also greatly acknowledged.

Finally, I would like to thank all my family and friends, especially my mother, Mary Kramp, father, Donald Kramp, and Yvonne. This work would not have been completed without their love and support.
Contents

CHAPTER 1 INTRODUCTION .. 1
 1.1 RAIL VEHICLE MODELING ... 1
 1.2 IMPORTANCE OF TRACK INPUT .. 2
 1.3 RESEARCH OBJECTIVES ... 3
 1.4 RESEARCH APPROACH ... 3
 1.5 OUTLINE ... 4

CHAPTER 2 BACKGROUND .. 5
 2.1 LITERATURE SEARCH ... 5
 2.1.1 Track Irregularities ... 6
 2.1.2 Rail Vehicle Model .. 7
 2.2 TRACK GEOMETRY ... 8
 2.3 TRACK IRREGULARITIES .. 10
 2.3.1 Alignment ... 10
 2.3.2 Gauge .. 11
 2.3.3 Profile ... 12
 2.3.4 Cross Level ... 13
 2.4 TRACK CLASS ... 15
 2.5 NUCARS MODELING ... 15

CHAPTER 3 DATA ANALYSIS ... 18
 3.1 TRACK DATA .. 18
 3.2 EVALUATE TRACK DATA ... 19
 3.3 ANALYSIS .. 21
 3.3.1 Statistical Analysis ... 21
 3.3.2 Frequency Analysis ... 23
 3.4 RESULTS ... 25
 3.4.1 Statistical Results ... 26
List of Figures

Figure 2.1 Literature Search Flow Chart; Parentheses Indicate the Number of “Hits”........ 6
Figure 2.2 NUCARS Coordinate System... 8
Figure 2.3 Schematic of Various Types of Track... 9
Figure 2.4 Track Curvature.. 9
Figure 2.5 Illustration of Track Alignment Deviation... 11
Figure 2.6 Illustration of Track Gauge Deviation ... 12
Figure 2.7 Illustration of Track Profile Deviation.. 13
Figure 2.8 Illustration of Track Cross Level Deviation... 14
Figure 2.9 System of Interconnected Bodies... 16
Figure 3.1 Test Tracks at the Transportation Technology Center, Inc. in Pueblo, CO 19
Figure 3.2 Track Chart of High Tonnage Loop from the Transportation Technology Center, Inc. ... 20
Figure 3.3 Dead Spots in the Left Alignment Data of the Railroad Test Track.................. 21
Figure 3.4 Histogram of Transit Test Track Alignment Data... 23
Figure 3.5 Three Hanning Windows with 50% Overlap.. 24
Figure 3.6 Auto Spectrum of Balloon Loop Track Geometry Data; (a) Alignment Data, (b) Profile Data... 29
Figure 3.7 Auto Spectrum of HTL Track Geometry Data; (a) Alignment Data, (b) Profile Data ... 30
Figure 3.8 Auto Spectrum of WRM Track Geometry Data; (a) Alignment Data, (b) Profile Data... 31
Figure 3.9 Auto Spectrum of TTT Track Geometry Data; (a) Alignment Data, (b) Profile Data... 32
Figure 3.10 Auto Spectrum of RTT Track Geometry Data; (a) Alignment Data, (b) Profile Data ... 33
Figure 3.11 Comparison of Auto Spectrum of Left Alignment for Class 4 Tracks 34
Figure 3.12 Comparison of Auto Spectrum of Right Alignment for Class 4 Tracks......... 34
Figure 3.13 Comparison of Auto Spectrum of Left Profile for Class 4 Tracks 35
Figure 3.14 Comparison of Auto Spectrum of Right Profile for Class 4 Tracks 35
Figure 3.15 Comparison of Auto Spectrum of Left Alignment for All Tracks 37
Figure 3.16 Comparison of Auto Spectrum of Right Alignment for All Tracks 37
Figure 3.17 Comparison of Auto Spectrum of Left Profile for All Tracks 38
Figure 3.18 Comparison of Auto Spectrum of Right Profile for All Tracks 38
Figure 3.19 Result of 62 Foot Mid-Cord Offset Method on Signal with 31 Foot
Wavelength .. 40
Figure 3.20 Result of 62 Foot Mid-Cord Offset Method on Signal with 350 Foot
Wavelength .. 40
Figure 3.21 Result of 62 Foot Mid-Cord Offset Method on Signal with 62 Foot
Wavelength .. 41
Figure 3.22 Characteristics of 62 Foot Mid-Cord Offset Method; (a) Gain Response,
(b) Phase Response .. 42
Figure 3.23 Characteristics of Finite Impulse Response Low-Pass Filter; (a) Gain
Response, (b) Phase Response ... 44
Figure 4.1 TRAKVU Menu for Setting Up to Read Data .. 48
Figure 4.2 Flow Chart of Track Creation in TRAKVU ... 49
Figure 4.3 TRAKVU Plot Menu .. 50
Figure 4.4 TRAKVU Plot of Two Variables .. 51
Figure 4.5 Example of Piece Wise Linear (PWL) Representation 52
Figure 4.6 Example of .PWL File for Use in NUCARS INP File 53
Figure 4.7 Example of Random Track Irregularities .. 54
Figure 4.8 Examples of Basic Shape Irregularities; (a) Sine Wave, (b) Square Wave,
(c) Saw Tooth Wave ... 55
Figure 4.9 Example of Class 5 Track Irregularities ... 56
Figure 5.1 Comparison of Auto Spectrum for Alignment Data of TTT and TRAKVU-
Created Track .. 60
Figure 5.2 Comparison of Auto Spectrum for Profile Data of TTT and TRAKVU-
Created Track .. 60
Figure 5.3 Comparison of Pure Signal, 62 ft MCO Signal, and Filtered Signal 62
Figure 5.4 Comparison of Gain Response for Digital Filter and 62 ft MCO Method 63
Figure 5.5 Comparison of Auto Spectrum of Filtered Data and 62 ft MCO Data 63
Figure 5.6 Comparison of Auto Spectrum of Actual Track and 62 ft MCO of Random
Data ... 64
Figure 5.7 Plot of Pitch and Bounce Track Section .. 66
Figure 5.8 Plot of Twist and Roll Track Section ... 66
Figure 5.9 PREVU Picture of Trilevel Autorack ... 68
Figure 5.10 Comparison of Pitch and Bounce Lateral Wheel Forces for Actual Vehicle
Response and Predicted Response Using TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 70
Figure 5.11 Comparison of Pitch and Bounce Vertical Wheel Forces for Actual Vehicle
Response and Predicted Response Using TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 71
Figure 5.12 Comparison of Twist and Roll Lateral Wheel Forces for Actual Vehicle
Response and Predicted Response Using TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 73
Figure 5.13 Comparison of Twist and Roll Vertical Wheel Forces for Actual Vehicle
Response and Predicted Response Using TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 74
Figure 5.14 Comparison of Pitch and Bounce Lateral Wheel Forces for Predicted
Response Using Measured Track and TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 76
Figure 5.15 Comparison of Pitch and Bounce Vertical Wheel Forces for Predicted
Response Using Measured Track and TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 77
Figure 5.16 Comparison of Twist and Roll Lateral Wheel Forces for Predicted
Response Using Measured Track and TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 80
Figure 5.17 Comparison of Twist and Roll Vertical Wheel Forces for Predicted
Response Using Measured Track and TRAKVU Track; (a) Left Wheel,
(b) Right Wheel .. 81
List of Tables

Table 2.1 Track Class Speed Limits... 15
Table 3.1 Track Class Means... 26
Table 3.2 Standard Deviations of Alignment and Profile of All Tracks.............. 27
Table 3.3 Track Class Standard Deviations .. 27
Table 5.1 Statistical Analysis Comparing TRAKVU Track and Actual Track......... 58
Table 5.2 Criteria Used for Creating Pitch and Bounce and Twist and Roll Tracks.... 67
Table 5.3 Statistical Comparison of Actual and TRAKVU Pitch and Bounce Wheel
 Forces... 82
Table 5.4 Statistical Comparison of Actual and TRAKVU Twist and Roll Wheel
 Forces... 83
Table 5.5 Statistical Comparison of Predicted Pitch and Bounce Wheel Forces 83
Table 5.6 Statistical Comparison of Predicted Twist and Roll Wheel Forces 84