List of Tables

Table 3-1. Alkane Penetrants 15
Table 3-2. Ester Penetrants 15
Table 4-1. IRE Materials Used in ATR Applications 26
Table 4-2. Evaluated Diffusivity and Equilibrium IR Absorption of Ester Penetrants in R/flex 410 via FTIR-ATR Spectroscopy 55
Table 4-3. Temperature Dependence of IDP Diffusivity via FTIR-ATR Spectroscopy 56
Table 5-1. K and n parameters for n-alkanes for 23°C from nonlinear fit to equation (3) 71
Table 5-2. K and n parameters for n-alkanes for 45°C from nonlinear fit to equation (3) 72
Table 5-3. K and n parameters for n-alkanes for 55°C from nonlinear fit to equation (3) 73
Table 5-4. K and n parameters for n-alkanes for 65°C from nonlinear fit to equation (3) 74
Table 5-5. K and n parameters for n-alkanes for 85°C from nonlinear fit to equation (3) 75
Table 5-6. Equilibrium sorption values for n-alkanes expressed in terms of percent weight uptake 76
Table 5-7. Equilibrium sorption values for n-alkanes expressed in terms of mole weight percent uptake 77
Table 5-8. Diffusion Coefficients for n-alkanes as a function of temperature 78
Table 5-9. Power law coefficients for molecular weight dependence for alkanes as described by equation (9) 81
Table 5-10. Arrhenius parameters from evaluation of activation energy of diffusion 84
Table 5-11. Permeability coefficients for n-alkanes 90
Table 5-12. Activation parameters for n-alkanes

Table 5-13. First-order kinetic parameters for n-alkanes at 23°, 45°, 55°, 65°, and 85°C

Table 5-14. Standard enthalpy (ΔH_o kJ/mole) and entropy of sorption ($\Delta S_o \times 10^3$ kJ/mole/°K)

Table 5-15. K and n parameters for sorption of ester penetrants at 23° using equation (3)

Table 5-16. K and n parameters for sorption of ester penetrants at 45° using equation (3)

Table 5-17. K and n parameters for sorption of ester penetrants at 55° using equation (3)

Table 5-18. K and n parameters for sorption of ester penetrants at 65° using equation (3)

Table 5-19. K and n parameters for sorption of ester penetrants at 85° using equation (3)

Table 5-20. Diffusion coefficients for ester penetrants

Table 5-21. b and n coefficients from molar mass power law fit of ester penetrants

Table 5-22. Arrhenius parameters for ester penetrants

Table 5-23. Permeability coefficients (P x 10^9 cm2/sec) for ester penetrants

Table 5-24. Activation parameters (E_d, E_p, and ΔH_s all in kJ/mole) for ester penetrants

Table 5-25. Standard enthalpy (ΔH_o kJ/mole) and entropy of sorption ($\Delta S_o \times 10^3$ kJ/mole/°K)

Table 5-26. First-order kinetic parameters for ester penetrants at 23°, 45°, 55°, 65°, and 85°C

Table 5-27. Evaluation of crosslink density, ρ_c, and molecular weight between crosslinks, M_c, for the neat adhesive film

Table 5-28. Evaluated χ parameters for n-alkanes as a function of temperature

Table 5-29. Evaluated χ parameters for esters as a function of temperature
Table 5-30. Activation energy per addition of a methylene (CH$_2$) unit (kJ/mole/CH$_2$) for both the n-alkane and ester penetrants.

Table 5-31. Number of iterations for the penetrants selected for Monte-Carlo analysis

Table 5-32. Geometrical parameters obtained from Monte-Carlo simulations of n-alkane and ester penetrants

Table 6-1. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to hexane

Table 6-2. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to heptane

Table 6-3. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to nonane

Table 6-4. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to decane

Table 6-5. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to undecane

Table 6-6. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to tridecane

Table 6-7. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to pentadecane

Table 6-8. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to hexadecane

Table 6-9. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to heptadecane

Table 6-10. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to methyl acetate

Table 6-11. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to ethyl propionate

Table 6-12. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to propyl butyrate
Table 6-13. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to ethyl heptanoate 211

Table 6-14. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to ethyl nonoate 211

Table 6-15. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to ethyl undecanoate 212

Table 6-16. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to ethyl myristate 212

Table 6-17. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to isopropyl myristate 213

Table 6-18. C_1 and C_2 values evaluated from frequency-temperature master curves of adhesive exposed to isodecyl pelargonate 213