Operation of a High-Pressure Uncooled Plasma Torch with Hydrocarbon Feedstocks

by

Scott D. Gallimore
Committee Chairman: Dr. Walter F. O’Brien
Mechanical Engineering Department

(ABSTRACT)

The main scope of this project was to determine if a plasma torch could operate on pure hydrocarbon feedstocks and, if so, to catalogue the torch operational characteristics. The future goal of the project is to design a plasma torch for supersonic combustion applications that operates off of the vehicle main fuel supply to simplify onboard fuel systems. Experiments were conducted with argon, methane, ethylene and propylene. Spectrographic tests and tests designed to catalogue current/voltage characteristics, plasma jet phenomena, arc stability dependencies, electrode erosion rate and torch body temperature were performed.

Spectrographic analysis of the plasma jet exhaust confirmed the presence of combustion-enhancing radicals for each hydrocarbon gas tested. Also, it was discovered that simple hydrocarbon gases, such as methane, produced smooth torch operation, while even slightly more complex gases, ethylene and propylene, caused unsteady performance. Plasma jet oscillation was found to be related to the voltage waveform of the power supplies, indicating that plasma jet length and oscillation rate could be controlled by changing the input voltage.

The plasma torch for this study was proven to have the capability of operating with pure hydrocarbon feedstocks and producing radicals that are known to reduce combustion reaction rate times. The torch was demonstrated to have potential for use in supersonic combustion applications.
Acknowledgements

First and foremost, I would like to thank God for giving me the ability and perseverance to obtain a master’s degree at this competitive school. His hand was certainly involved, helping the project to run smoothly. I would also like to thank my parents for their support, both financial and emotional, over my entire collegiate career. They have certainly been a blessing in my life.

On the academic side, I am especially grateful for my advisor Dr. Walter F. O’Brien. He has shown great wisdom in guiding this project. Also, his ability to snap his fingers and produce equipment, money and people out of thin air, helpful to the project, was greatly appreciated. He provided me with a project that I truly enjoyed. I am also very appreciative of my committee member Dr. Joseph Schetz. His constant involvement and ability to tell you exactly what he’s thinking, in no uncertain terms, was very motivating. He brought out my best performance. Finally, I would like to thank Dr. Charlie Yates for sacrificing his time and agreeing to serve on my committee.

The project would not have succeeded without the help of the ME and AOE shop members, especially Bruce, Gary, Greg, Bill and Boom-Boom. Every time we melted the torch, or burned something to cinders, Bruce was there to help. Also, I would like to acknowledge Bill for machining the trillion electrodes we used, day after day after day.

I would also like to thank the people in my lab, Peter King, Joseph Howard, Shaun Boller and Ya-Tien (Mac) Chiu. They certainly made long days typing in front of a computer more entertaining with their conversation.

Finally, I would like to thank Chip for keeping me sane every time something did happen to go wrong. His ability to find computer hardware, while also providing amusement was invaluable. Hey Chip, don’t forget your fireboots.
Table of Contents

Abstract ii
Acknowledgments iii
List of Figures vii
List of Tables ix

Section 1.0: Introduction

1.1: Goals and Objectives 1
1.2: Results 2
1.3: Summary 2

Section 2.0: History, Development, Obstacles and Proposed Solutions of Hypersonic Technology

2.1: Scramjet History and Design 3
2.1.1: Scramjet Cycle Analysis 4
2.1.2: The History of Scramjets 5
2.2: Obstacles Encountered with Scramjet Combustion 6
2.3: Proposed Solutions to Supersonic Combustion Difficulties 7
2.3.1: Fuel Injection 8
2.3.2: Recessed Cavity Flameholders 9
2.3.3: Ramps and Wedges 9
2.3.4: Plasma Torches 10
2.3.5: Integration of a Plasma Torch and Fuel Injector Design 11
2.4: Effectiveness of Plasma Torches in Supersonic Combustion 11
2.5: Summary 13

Section 3.0: Plasma Torch Design

3.1: Heat Transfer Design Considerations 16
3.1.1: Cathode Heat Transfer 16
3.1.2: Anode Heat Transfer 18
3.2: Arc Mode Design Considerations 20
3.2.1: Regions of an Electric Arc 21
3.3: Effect of Gas Properties on Torch Design 21
3.3.1: Ionization Processes 23
3.4: Arc Stability 23
3.4.1: Arc Diameter 24
3.4.2: Wall Stabilization 25
3.4.3: Vortex Stabilization 25
3.4.4: Magnetic Arc Rotation 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>Plasma Torch Start/Restart Capabilities</td>
<td>85</td>
</tr>
<tr>
<td>11.1</td>
<td>Testing Setup and Procedure</td>
<td>85</td>
</tr>
<tr>
<td>11.2</td>
<td>Results and Discussion</td>
<td>86</td>
</tr>
<tr>
<td>11.3</td>
<td>Concluding Remarks</td>
<td>86</td>
</tr>
<tr>
<td>12.0</td>
<td>Plasma Torch Operating Temperature</td>
<td>88</td>
</tr>
<tr>
<td>12.1</td>
<td>Test Procedure</td>
<td>88</td>
</tr>
<tr>
<td>12.2</td>
<td>Results and Discussion</td>
<td>89</td>
</tr>
<tr>
<td>12.3</td>
<td>Recommendations and Final Remarks</td>
<td>92</td>
</tr>
<tr>
<td>13.0</td>
<td>Plasma Jet Oscillation</td>
<td>93</td>
</tr>
<tr>
<td>13.1</td>
<td>Test Procedure</td>
<td>93</td>
</tr>
<tr>
<td>13.2</td>
<td>Results and Discussion</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>13.2.1: Acoustic Test Results</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>13.2.2: Optical Test Results</td>
<td>96</td>
</tr>
<tr>
<td>13.3</td>
<td>Recommendations and Final Remarks</td>
<td>98</td>
</tr>
<tr>
<td>14.0</td>
<td>Torch Startup Phenomena</td>
<td>99</td>
</tr>
<tr>
<td>14.1</td>
<td>Test procedure</td>
<td>99</td>
</tr>
<tr>
<td>14.2</td>
<td>Results and Discussion</td>
<td>100</td>
</tr>
<tr>
<td>14.3</td>
<td>Recommendation and Final Remarks</td>
<td>109</td>
</tr>
<tr>
<td>15.0</td>
<td>Optical Examination of Steady-State Plasma Jet</td>
<td>112</td>
</tr>
<tr>
<td>15.1</td>
<td>Test Procedure</td>
<td>112</td>
</tr>
<tr>
<td>15.2</td>
<td>Results and Discussion</td>
<td>113</td>
</tr>
<tr>
<td>15.3</td>
<td>Recommendations and Final Remarks</td>
<td>116</td>
</tr>
<tr>
<td>16.0</td>
<td>Spectrographic Analysis of Combustion Products</td>
<td>117</td>
</tr>
<tr>
<td>16.1</td>
<td>Equipment and Calibration</td>
<td>118</td>
</tr>
<tr>
<td>16.2</td>
<td>Testing Setup and Procedure</td>
<td>120</td>
</tr>
<tr>
<td>16.3</td>
<td>Results and Discussion</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>16.3.1: Methane Spectrographic Test Results</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>16.3.2: Ethylene Spectrographic Test Results</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>16.3.3: Propylene Spectrographic Test Results</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>16.3.4: Power Effect on Radical Production</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>16.3.5: The Presence of Hydrogen Atoms</td>
<td>127</td>
</tr>
<tr>
<td>16.4</td>
<td>Concluding Remarks</td>
<td>129</td>
</tr>
<tr>
<td>17.0</td>
<td>Final Remarks and Recommendations</td>
<td>130</td>
</tr>
<tr>
<td>18.0</td>
<td>References</td>
<td>132</td>
</tr>
</tbody>
</table>

Vita | 139 |
Appendix: A | 140 |
List of Figures

1. Schematic Diagram of a Generic Scramjet Engine 4
2. Effect of Pressure on Ignition Delay Time 7
3. Setup For Plasma Torch and Fuel Injectors in Supersonic Test Cell 12
4. A Generic Plasma Torch Design 15
5. Arc Mode Operation 20
6. Virginia Tech Plasma Torch Schematic 28
7. The Positive Section of the Torch (assembled) 30
8. The Positive Section of the Torch (disassembled) 30
9. Plasma Torch Angle Indicator 31
10. The Negative Section of the Torch (assembled) 32
11. The Negative Section of the Torch (disassembled) 33
12. Plasma Torch Insulators 34
13. Nylon Insulator and Pressure Ring 35
14. Example of Gas Seal Failure 37
15. Cross Section of the Flow Swirler 38
16. Photograph of the Flow Swirler 39
17. Virginia Tech Plasma Torch Electrodes 40
18. Plasma Torch Anode Schematic 41
19. Plasma Torch Cathode Schematic 42
20. Definition of Arc Gap, G 42
21. Victor® Hydrocarbon Regulator 43
22. Mass Flow Meters 45
23. Mass Flow Controller 45
24. Data Acquisition Hardware 47
25. Ebert Spectrometer with Burle PMT 47
26. Spectrometer Controls 48
27. Plasma Torch Power Supplies 49
28. High Frequency Starter Box 50
29. Plasma Torch in Test Cell 51
30. An Example of Stable Ethylene Operation 56
31. Hruby Arcjet V-I Characteristics 59
32. V-I Characteristics for Methane 62
33. V-I Characteristics for Ethylene 64
34. Pressure Effects on Voltage (Methane) 65
35. Spark Breakdown Voltage 66
36. Voltage vs. Arc Gap (Methane and Ethylene) 70
37. An Example of Anode Coking 74
38. Thermal Conductivity of Tungsten vs. Temperature 78
39. Heavy Electrode Emission at Startup 81
40. Chemical Structures of Hydrocarbon Feedstocks 82
41. Torch Body Temperature Test Results 90
42. Voltage Waveform of Torch Power Supply 95
List of Tables

1. Arc Stability vs. Flowrate and Current Test Summary 55
2. Electrode Erosion Results 80
3. Torch Body Temperature Tests 89
4. Plasma Torch Steady-State Operating Temperatures 90
5. Specific Heats, Densities and Chemical Formulas of Torch Feedstocks 91
6. Optical Examination Test Conditions 94
7. High-Speed Digital Jet Examination Tests 99
8. Spectrographic Test Summary 122
9. Potential Species Production (Methane) 123
10. Potential Species Production (Ethylene) 125
11. Potential Species Production (Propylene) 126
12. Peak Summary for Different Methane Current Levels 127