Title page for ETD etd-72698-12353

Type of Document Master's Thesis
Author Xie, Haibing
Author's Email Address hxie@vt.edu
URN etd-72698-12353
Title Role of the MoFe Protein &szlig-95-Cysteinyl Residue in Nitrogenase Catalysis in Azotobacter vinelandii
Degree Master of Science
Department Biochemistry
Advisory Committee
Advisor Name Title
Newton, William E. Committee Chair
Chen, Jiann-shin Committee Member
Larson, Timothy J. Committee Member
  • Nitrogenase
  • MoFe Protein
  • P cluster
  • <i>A. vinelandii</i>
  • &szlig-95<sup>Cys</sup>
  • &szlig-95<sup>Asp</sup>
Date of Defense 1998-08-20
Availability restricted
Previous studies revealed that &szlig-95-Cys provides an essential ligand to one of the Fe atoms on the P cluster within the MoFe protein of nitrogenase, and a limited number of substitutions at this position resulted in inactive nitrogenase. It was also found that the counterpart of &szlig-95-Cys, Alpha-88-Cys, which also acts as a cysteinyl ligand to the P cluster, is replaceable without a complete loss of activity. In order to study the structure-function relationship of the protein environment in this region with respect to the P-cluster, subtle changes were introduced at &szlig-95-Cys in Azotobacter vinelandiinitrogenase through site-directed mutagenesis and gene replacement method. Some crude extracts from the mutants with substitutions at &szlig-95-Cys contain typical FeMo cofactor EPR signal. The &szlig-95Asp MoFe protein also has significant nitrogenase activity, but lower, suggesting that &szlig-95-Cys is not absolutely required for both FeMo cofactor insertion and nitrogenase activity.

In order to characterize its catalytic features, the &szlig-95Asp MoFe protein was purified from mutant strain DJ1096. It has significantly reduced H+ reduction, C2H2-reduction and N2-reduction activity. It was found that a higher percentage of electron flux goes to H+ compared to the wild type MoFe protein. It was also found that reductant independent ATP hydrolysis occurs during H+ reduction, suggesting that the altered MoFe protein has an increased affinity for Fe protein-ADP complex. Surprisingly, CO has a significant enhancement effect on H+ reduction at low electron flux, but not at high electron flux, and highly couples the electron transfer to ATP hydrolysis. These results indicate that the binding of CO to the MoFe protein may either decrease the affinity of Fe-ADP complex for the &szlig-95Asp MoFe protein or facilitate electron acceptance by the P cluster, thus improving the electron transfer to substrate.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Final-1.pdf 1.01 Mb 00:04:39 00:02:23 00:02:05 00:01:02 00:00:05
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.