ACKNOWLEDGEMENTS

I thank my advisor, David F. Cox, for giving me the opportunity to work in a very interesting area, and for his support and guidance throughout my graduate studies at Virginia Tech.

I thank the members of my committee for their time and effort as well as the D.O.E. for the financial support of my work.

I thank my parents for their love and support while I decided to be a “professional” student for awhile.

I thank Steve York, Mark Abee, and Todd St. Clair for making the lab a tolerable and even at times an enjoyable place to come to each day.

I thank Kevin Rosso and the other “rock-boys” in Geology for their invaluable help during the STM portion of this study.

Finally, I thank all the friends I’ve met over my many years at Virginia Tech especially Joe Edwards, Jeremy Koren, Wes Lang, and Justin Nave. I learned a great deal from each of you, none of which I can remember now.
TABLE OF CONTENTS

Introduction 1

Chapter 1: STM Imaging of the SnO₂ Surface

1.1 Introduction 3
1.2 Experimental 5
1.3 Results and Discussion 9
 1.3.1 Synthetic SnO₂ Sample 9
 1.3.2 Natural SnO₂ Sample 14
 1.3.3 Single Crystal Cu₂O (111) Sample 19
1.4 Conclusions 21
1.5 References 22

Chapter 2: Water Adsorption on the stoichiometric Cr₂O₃ (1012) Single Crystal Surface

2.1 Introduction 23
2.2 Experimental 26
2.3 Results 28
 2.3.1 Thermal Desorption Spectroscopy 28
 2.3.2 Ultraviolet Photoelectron Spectroscopy 31
2.4 Discussion 33
2.5 Conclusions 35
2.6 References 36

Chapter 3: Halogen-Oxygen Exchange on Cr₂O₃ (1012) Single Crystal Surfaces

3.1 Introduction 38
3.2 Experimental 42
3.3 Results 45
 3.3.1 Oxygen-Halogen Exchange on a Chlorinated Surface 45
 3.3.2 Halogen-Oxygen Exchange on an Oxygenated Surface 46
 3.3.3 Thermally Activated Diffusion of Oxygen 48
3.4 Discussion 50
 3.4.1 Oxygen-Halogen Exchange 50
 3.4.2 Halogen-Oxygen Exchange 52
 3.4.3 Comparison to Powder Studies 53
3.5 Conclusions 54
3.6 References 55
LIST OF FIGURES

1.1 (a) 600 nm x 600 nm and (b) 250 nm x 250 nm STM images of the synthetic SnO₂ sample obtained at a sample bias of +2.0 V and a 0.14 nA tunneling current. Both images were collected in constant current mode.

1.2 (a) 432 nm x 432 nm STM image of the synthetic SnO₂ sample obtained at a sample bias of +2.0 V and a 0.18 nA tunneling current. The image was collected in constant current mode. (b) 432 nm x 432 nm AFM image of the synthetic SnO₂ sample obtained following a series of high temperature treatments.

1.3 Ball model illustration of the ideal stoichiometric SnO₂ (110) surface. The unit cell is 6.70 Å (A) by 3.19 Å (B). Small circles represent Sn cations, larger circles represent O anions.

1.4 (a) 6.0 nm x 6.0 nm STM image of the natural SnO₂ sample obtained at a sample bias of +2.0 V and a 0.4 nA tunneling. Image was collected in constant height mode. (b) 1.6 nm x 1.6 nm enlargement of an area from Figure 1.3 (a).

1.5 20 nm x 20 nm STM image of the single crystal Cu₂O (111) sample obtained at a sample bias of –3.0 V and a 0.6 nA tunneling current. The image was collected in constant current mode.

2.1 Ball model illustration of the ideal, stoichiometric Cr₂O₃ (1012) surface.

2.2 Thermal desorption traces for water following adsorption at 163 K on the nearly stoichiometric Cr₂O₃ (1012) surface.

2.3 H₂O desorption peak areas following adsorption at 163 K on the nearly stoichiometric Cr₂O₃ (1012) surface.

2.4 Thermal desorption traces for a 1/4 L exposure of D₂O and H₂O following adsorption at 163 K on the nearly stoichiometric Cr₂O₃ (1012) surface.

3.1 Ball model illustration of the ideal, stoichiometric Cr₂O₃ (1012) surface.

3.2 AES spectra for the three types of surface preparations (clean, oxygenated, and chlorinated) studied.

3.3 AES O:Cr and Cl:Cr ratios following consecutive 1/8 L oxygen exposures at 173 K on a chlorinated surface.

3.4 AES O:Cr and Cl:Cr ratios following consecutive 1/8 L CFCl₂CH₂Cl exposures at 173 K on an oxygenated surface.

3.5 AES Cl:Cr ratio following consecutive 1/8 L CFCl₂CH₂Cl exposures at 173 K on clean and oxygenated surfaces.