Communications Project

Document Type:Master's Thesis
Name:Todd Matthew Gingerich
Degree:Master of Science
Department:Food Science & Technology
Committee Chair: George J. Flick Jr.
Committee Members:Merle D. Pierson
Harold M. McNair
Keywords:biogenic amines, histamine, putrescine, cadaverine, bluefish, Morganella morganii
Date of defense:August 20, 1998
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.


Changes in histamine, putrescine, and cadaverine concentrations in fresh and stored bluefish (Pomatomus saltatrix) were determined using a new HPLC method. The HPLC method utilized a 5.0% (w/v) trichloroacetic acid (TCA) extraction, pre-column fluorescamine derivitization, and fluorescence detection. The derivatives were stable over 24 h. The 5% TCA extraction produced percent recoveries of 98.6%, 98.7, and 100.0% for histamine, cadaverine, and putrescine respectively. The HPLC process including extraction, derivatization, and HPLC analyses was conducted in less than 45 minutes. Fresh bluefish was found to contain between <1 ppm and 99 ppm histamine, and no cadaverine or putrescine. Fresh bluefish fillets were stored at 5, 10, and 15 degrees C until sensory rejection. Fresh bluefish fillets inoculated with Morganella morganii were also stored at the same conditions. Histamine levels as high as 2200 ppm were observed in the inoculated fish stored at 15 degrees C. Overall, histamine achieved higher levels in the bluefish pieces inoculated with Morganella morganii. Histamine was present in greater amounts than putrescine and cadaverine in the bluefish samples. Histamine levels at each temperature exceeded the 50 ppm advisory level established by the FDA before 100% sensory rejection. Putrescine levels increased at each temperature during storage. Cadaverine was present only in uninoculated bluefish stored at 15 degrees C. Consumer risk from histamine poisoning seems to be the greatest in those fish stored at 5 degrees C where acceptance levels were higher and histamine levels above 100 ppm were observed. The presence of histamine-forming bacteria in fish-processing facilities was studied. Environmental sampling techniques were conducted in the Hampton Roads area of Virginia in fish-processing facilities that regularly handle scombroid fish or other fish which are known to accumulate histamine levels greater than 50 ppm. Surfaces that come into contact with the fish were swabbed and the histamine-forming bacteria from these areas were identified. One isolate each of Klebsiella ozaenae and Vibrio alginolyticus, and two isolates of Aeromonas sp. were found in the processing facilities. The study concluded that histamine-forming bacteria do not make up a large part of the microflora associated with fish-processing facilities. Fishing vessels were also sampled and no histamine-forming bacteria were identified.

List of Attached Files


At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.

The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.