Communications Project

Document Type:Dissertation
Name:Alireza Ghassemian
Degree:Doctor of Philosophy
Department:Electrical Engineering
Committee Chair: Dr. Lamine M. Mili
Committee Members:Dr. L. M. Mili
Dr. C. W. Coakley
Dr. A. A. Beex
Dr. Y. Liu
Dr. R. P. Broadwater
Keywords:Robust statistic, Measurement calibration
Date of defense:October 13, 1997
Availability:Release the entire work for Virginia Tech access only.
After one year release worldwide only with written permission of the student and the advisory committee chair.


The Objective of the Remote Measurements Calibration (RMC) method is to minimize systematic errors through an appropriate scaling procedure. A new method for RMC has been developed. This method solves the problems of observability, multiplicity of solutions, and ambiguity of reference points associated with the method proposed by Adibi et. al. [6-9]. The new algorithm uses the simulated annealing technique together with the matroid method to identify and minimize the number of RTUs (Remote Terminal Units) required to observe the system. After field calibration, these RTUs provide measurements that are used to estimate the whole state of the system. These estimates are then returned as a reference for remotely calibrating the remaining RTUs. The calibration coefficients are estimated by means of highly robust estimator, namely the Least Median of Squares (LMS) estimator. The calibration method is applicable to large systems by means of network tearing and dynamic programming. The number of field calibrations can be decreased further whenever multiple voltage measurements at the same buses are available. The procedure requires that the measurement biases are estimated from recorded metered values when buses, or lines, or transformers are disconnected. It also requires the application of a robust comparative voltage calibration method. To this end, a modified Friedman test has been developed and its robustness characteristics investigated.

List of Attached Files


At the author's request, all materials (PDF files, images, etc.) associated with this ETD are accessible from the Virginia Tech network only.

The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.