Scholarly Communications Project



Dean H. Orrell

PhD Dissertation submitted to the Faculty of the Virginia Tech in partial fulfillment of the requirements for the degree of

Doctor of Philosophy


Industrial and Systems Engineering


Prof. Paul Kemmerling / Dr. Robert Beaton, Co-Chairs
Dr. C. Patrick Koelling
Dr. John Burton
Dr. Robert Dryden

February 27, 1997
Blacksburg, Virginia


As the focus of this research, a new methodology -- human Performance Assessment Methodology (PAM), is introduced. PAM provides a quantitative basis for evaluating display image quality based on the visual events that occur in a task. The PAM approach identifies the visual events, decisions, and actions for a display system. To support PAM, a theoretical model, the Model of Visual Events (MOVE), is proposed for describing the relationship between visual events, decisions, and actions. MOVE describes four categories of perceptual decisions (i.e., detect, identify, discriminate, and evaluate) associated with visual events. Formal efficiency metrics are introduced in PAM to describe performance at the visual event, task, and network levels. Using PAM, an efficiency model was created for one visual display parameter (i.e., luminance), one decision type (i.e., detection) and one dependent variable (i.e., visual angle). Two experiments were accomplished to examine the validity of PAM. A two-factor mixed design was employed for both experiments, where decision type was varied between-subjects and visual display parameter (i.e., luminance or sharpness) was varied within-subjects. In the first experiment, luminance was varied across four levels (3.2, 4.5, 8.6, 16.5 cd/m2) for two decision types (detection and identification). In the second experiment, three levels of sharpness (50% spot width - 0.508, 0.711, 0.864 mm) were combined factorially with two decision types (detection and identification). In both experiments, participants visually Œwalked down a pathı and either detected or identified visual targets presented on the screen. Time-to-target and subjective responses were measured for each study. The results of the first experiment show that time-to-target and subjective rating significantly change as a function of luminance. For the sharpness variable in the second experiment, a significant difference was found for time-to-target while subjective rating was non-significant. In both studies, participants detected visual targets quickly, but required more time to identify targets. Using the PAM, functional relationships for luminance and sharpness were determined for detection and identification decisions. When detection data from the current study were contrasted with previous detection data, general agreement was found between the data sets. This research defines PAM and shows its utility for modeling the functional relationships among visual parameters. Further research is needed to validate and refine the PAM approach.

Full text (PDF) 537,791 Bytes

The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
[ETD main page] [Search ETDs][] [SCP home page] [library home page]

Send Suggestions or Comments to