Communications Project

Document Type:Dissertation
Name:Timothy J. Stemple
Degree:Doctor of Philosophy
Department:Engineering Science and Mechanics
Committee Chair: Leonard Meirovitch
Committee Members:William T. Baumann
Scott L. Hendricks
Robert C. Rogers
Mark S. Cramer
Keywords:multibody dynamics, flexible multibody structures, control
Date of defense:March 19, 1998
Availability:Release the entire work immediately worldwide.


The goal of this study is to present a method for deriving equations of motion capable of modeling the controlled motion of an open loop multibody structure comprised of an arbitrary number of rigid bodies and slender beams. The procedure presented here for deriving equations of motion for flexible multibody systems is carried out by means of the Principle of Virtual Work (often referred to in the dynamics literature as d'Alembert's Principle). We first consider the motion of a general flexible body relative to the inertial space, and then derive specific formulas for both rigid bodies and slender beams. Next, we make a small motions assumption, with the end result being equations for a Rayleigh beam, which include terms which account for the axial motion, due to bending, of points on the beam central axis. This process includes a novel application of the exponential form of an orthogonal matrix, which is ideally suited for truncation. Then, the generalized coordinates and quasi-velocities used in the mathematical model, including those needed in the spatial discretization process of the beam equations are discussed. Furthermore, we develop a new set of recursive relations used to compute the inertial motion of a body in terms of the generalized coordinates and quasi-velocities. This research was motivated by the desire to model the controlled motion of a flexible space robot, and consequently, we use the multibody dynamics equations to simulate the motion of such a structure, providing a demonstration of the computer program. For this particular example we make use of a new sequence of shape functions, first used by Meirovitch and Stemple to model a two dimensional building frame subjected to earthquake excitations.

List of Attached Files


The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.