Ajit R. Shenoy

PhD Dissertation submitted to the Faculty of the Virginia Tech in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Aerospace Engineering

Approved

Eugene M. Cliff, Chair

Bernard Grossman

Frederick Lutze

Rakesh K. Kapania

Terry L. Herdman

April 11, 1997

Blacksburg, Virginia

The research presented in this dissertation investigates the use of all-at-once methods applied to aerodynamic design. All-at-once schemes are usually based on the assumption of sufficient continuity in the constraints and objectives, and this assumption can be troublesome in the presence of shock discontinuities. Special treatment has to be considered for such problems and we study several approaches. Our all-at-once methods are based on the Sequential Quadratic Programming method, and are designed to exploit the structure inherent in a given problem. The first method is a Reduced Hessian formulation which projects the optimization problem to a lower dimension design space. The second method exploits the sparse structure in a given problem which can yield significant savings in terms of computational effort as well as storage requirements. An underlying theme in all our applications is that careful analysis of the given problem can often lead to an efficient implementation of these all-at-once methods. Chapter 2 describes a nozzle design problem involving one-dimensional transonic flow. An initial formulation as an optimal control problem allows us to solve the problem as as two-point boundary problem which provides useful insight into the nature of the problem. Using the Reduced Hessian formulation for this problem, we find that a conventional CFD method based on shock capturing produces poor performance. The numerical difficulties caused by the presence of the shock can be alleviated by reformulating the constraints so that the shock can be treated explicitly. This amounts to using a shock fitting technique. In Chapter 3, we study variants of a simplified temperature control problem. The control problem is solved using a sparse SQP scheme. We show that for problems where the underlying infinite-dimensional problem is well-posed, the optimizer performs well, whereas it fails to produce good results for problems where the underlying infinite-dimensional problem is ill-posed. A transonic airfoil design problem is studied in Chapter 4, using the Reduced SQP formulation. We propose a scheme for performing the optimization subtasks that is based on an Euler Implicit time integration scheme. The motivation is to preserve the solution-finding structure used in the analysis algorithm. Preliminary results obtained using this method are promising. Numerical results have been presented for all the problems described.

The author grants to Virginia Tech or its agents the right to archive and display their thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. The author retains all proprietary rights, such as patent rights. The author also retains the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Send Suggestions or Comments to webmaster@scholar.lib.vt.edu