Development of a Novel Zero-Turn-Radius Autonomous Vehicle

by

Charles Dean Haynie

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE IN

MECHANICAL ENGINEERING

APPROVED:

Dr. Charles Reinholtz, Chairman
Dept. of Mechanical Engineering

__________________ __________________
Dr. John Bay Dr. William Saunders
Dept. of Electrical Engineering Dept. of Mechanical Engineering

August, 1998

Blacksburg, Virginia

Keywords: Autonomous Mobile Robots, Sensors, Navigation
Abstract

This thesis describes the development of a new zero-turn-radius (ZTR) differentially driven robotic vehicle hereinafter referred to as NEVEL. The primary objective of this work was to develop a device that could be used as a test-bed for continued autonomous vehicle research at Virginia Tech while meeting the entry requirements of the Annual International Unmanned Ground Robotics Competition. In developing NEVEL, consideration was given to the vehicle's mechanical and electrical design, sensing and computing systems, and navigation strategy. Each of these areas was addressed individually, but always within the context of optimal integration to produce the best overall vehicle system. A constraint that directed much of the design process was the desire to integrate industrially available and proven components rather than creating custom designed systems. This thesis also includes a review of the relevant literature as it pertains to both subsystem and overall vehicle design.

NEVEL, the vehicle that was created from this research effort, is novel in several respects. It is one of the few true embodiments of a fully functioning, three-wheel, differential drive autonomous vehicle. Several previous studies
have developed this concept for indoor applications, but none has resulted in a working test-bed that can be applied to an unstructured, outdoor environment. NEVEL also appears to be one of the few autonomous vehicle systems to fully incorporate a commercially available laser range finder. These features alone would make NEVEL a useful platform for continued research. In addition, however, by using common, off-the-shelf components and a personal computer platform for all computation and control, NEVEL has been created to facilitate testing of new navigation and control strategies. As testimony to the success of this design, NEVEL was recognized at the Sixth Annual International Unmanned Ground Robotics Competition as the best overall design.
Acknowledgements

I would first like to thank my committee chairman, Dr. Charles Reinholtz, for acting as my advisor and a constant source of encouragement and support. I am especially grateful for his ability to realize that, as engineers, we need not all fit into a stereotypical niche. I would also like to thank Dr. John Bay and Dr. William Saunders for serving on my committee and introducing me to the world of mechatronics.

I would like to thank the 1997-1998 Virginia Tech Autonomous Vehicle Team for their contributions and hard work. I would like to single out the NEVEL team for their assistance, without which NEVEL might not have been completed. Thanks also to all the corporate sponsors whose donations made NEVEL’s fabrication possible. Thanks also to Alex, Matt, T.J., Mike, and Randy for their suggestions and companionship in the office.

Thanks to Nick, Brad, Debbie, Joy, Chris, Ron, Kirk, and Scott for all the good times and late nights. Thanks to Erick for sticking with me and joining me on the greatest road-trip of my life. Finally, I would like to thank my parents, Joan and Neal Haynie, for their endless love, support, and patience during my college career. I can never repay the two of two greatest gifts they ever gave me: life and an education.
Table of Contents

1 Introduction 1
 1.1 Definition of an Autonomous Robotic Vehicle........................... 1
 1.2 Motivation ... 2
 1.3 Technical Challenges .. 2
 1.4 Thesis Outline ... 3

2 Literature Review 5
 2.1 Mobile Robot Mechanical Architectures 5
 2.1.1 Mobility and Maneuverability ... 5
 2.1.2 Stability ... 6
 2.1.3 Wheeled Vehicles .. 8
 2.1.3.1 Three Wheels ... 8
 2.1.3.2 Four Wheels .. 10
 2.1.3.3 Six Wheels .. 11
 2.1.3.4 Omni-Directional Wheels .. 13
 2.1.3.5 Multi-Degree-of-Freedom Vehicles 14
 2.1.4 Tracked Vehicles ... 15
 2.1.5 Legged Vehicles ... 15
 2.1.6 Mechanical Architecture Summary 18
 2.2 Sensors .. 18
 2.2.1 Sensor Classification ... 19
 2.2.2 Active Sensors ... 19
 2.2.2.1 Laser Range Finders .. 19
 2.2.2.2 Radar .. 21
 2.2.2.3 Structured (Contrived) Lighting 21
 2.2.2.4 Ultrasonics ... 23
2.2.3 Passive Sensors ... 24
 2.2.3.1 Potentiometers .. 24
 2.2.3.2 Tachometers ... 25
 2.2.3.3 Resolvers and Synchros ... 25
 2.2.3.4 Encoders .. 25
 2.2.3.5 Tactile Sensors ... 27
 2.2.3.6 Cameras ... 27
 2.2.3.6.1 Computer Vision .. 29
2.2.4 Sensor Fusion ... 31
 2.2.4.1 What is Sensor Fusion? ... 31
 2.2.4.2 Sensor Fusion Considerations 31
 2.2.4.3 Sensor Fusion Architectures 33
2.2.5 Sensor Fusion Summary ... 35
2.3 Navigation ... 36
 2.3.1 Reactive vs. Planning Navigation 37
 2.3.2 Mapping ... 38
 2.3.2.1 Path Maps .. 39
 2.3.2.2 Free Space Maps .. 40
 2.3.2.3 Object Oriented Maps .. 42
 2.3.2.4 Composite Maps .. 42
 2.3.3 Path Planning ... 45
 2.3.3.1 Graph Searching ... 45
 2.3.3.2 Potential Fields ... 47
 2.3.4 Navigation Summary .. 49

3 Design Objectives and Constraints .. 50
 3.1 Applications Goals: Competition .. 50
 3.2 Design Goals: Navigation Test-Bed 53
 3.2.1 Mechanical Goals .. 53
 3.2.2 Sensor Goals ... 54
 3.2.3 Navigation Goals .. 55
3.3 Summary .. 56

4 Proposed Solution .. 58
 4.1 Vehicle Configuration .. 58
 4.2 Conceptual Design .. 60
 4.2.1 Power System ... 60
 4.2.2 Drive Motors .. 61
 4.2.3 Wheel Selection ... 62
 4.2.4 Computing Considerations 62
 4.2.5 Sensing and Navigation ... 63
 4.3 CAD Implementation ... 64
 4.4 Summary .. 65

5 Detailed Design .. 66
 5.1 Base Vehicle ... 66
 5.1.1 Drive Train ... 66
 5.1.2 Base Vehicle Assembly: The “T-Frame” 67
 5.1.3 Assembled Vehicle and Exterior Shell 70
 5.1.4 Power Systems .. 70
 5.2 Computing Resources ... 72
 5.2.1 Motor Control .. 73
 5.3 Sensor Suite ... 74
 5.3.1 Vision System .. 75
 5.3.2 Laser Range Finder ... 79
 5.4 Navigation Strategy .. 80
 5.4.1 Data Fusion ... 80
 5.4.2 Map Building ... 82
 5.4.3 Navigation Strategy ... 85
 5.5 Summary .. 90
List of Figures

2.1 Vehicle Stability Patterns ... 7
2.2 Three Wheel Vehicle Configurations ... 9
2.3 Four Wheel Vehicle Configurations ... 10
2.4 Virginia Tech’s Herbie ... 11
2.5 The Carnegie-Mellon Terregator ... 12
2.6 Rocky 7 Mars Rover ... 13
2.7 The Mekanum Wheel ... 14
2.8 The OmniMate MDOF Mobile Robot ... 14
2.9 TU Munich Hexapod ... 16
2.10 Hopping Robot ... 17
2.11 Scanning Laser Range Finder .. 20
2.12 Basic Structured Light Setup .. 22
2.13 Ultrasonic Range Finder .. 23
2.14 Two-Track Incremental Encoder Disc 26
2.15 Vision System Components ... 28
2.16 CCD Camera ... 28
2.17 Computer Vision Process .. 29
2.18 Sensor Fusion I/O Modes .. 34
2.19 Subsumption Architecture Reactive Navigation 37
2.20 Voronoi Diagrams .. 41
2.21 Generalized Cone Free Space ... 41
2.22 Object Oriented Map ... 42
2.23 Occupancy Grid .. 43
2.24 Certainty Grid ... 44
2.25 Quadtree Occupancy Grid .. 44
2.26 Map Paths .. 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.27</td>
<td>Graph Path Search</td>
<td>47</td>
</tr>
<tr>
<td>2.28</td>
<td>Potential Field Model</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical Competition Obstacle Course</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Horsepower Calculations</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>T-Frame Assembly</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>NEVEL’s Base Vehicle: Exploded and Final Assembly</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Component Support Shelving</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Final Vehicle Assembly</td>
<td>70</td>
</tr>
<tr>
<td>5.5</td>
<td>NEVEL’s Power System</td>
<td>71</td>
</tr>
<tr>
<td>5.6</td>
<td>Motor Control System</td>
<td>73</td>
</tr>
<tr>
<td>5.7</td>
<td>NEVEL’s Sensor Suite</td>
<td>74</td>
</tr>
<tr>
<td>5.8</td>
<td>NEVEL’s Vision Algorithm</td>
<td>76</td>
</tr>
<tr>
<td>5.9</td>
<td>Pixel Intensity vs. Number of Pixels</td>
<td>77</td>
</tr>
<tr>
<td>5.10</td>
<td>Perspective View Distortion</td>
<td>78</td>
</tr>
<tr>
<td>5.11</td>
<td>Vision Image Transformation</td>
<td>79</td>
</tr>
<tr>
<td>5.12</td>
<td>Confidence Grid Data Fusion</td>
<td>81</td>
</tr>
<tr>
<td>5.13</td>
<td>Old Confidence Grid Transformation</td>
<td>83</td>
</tr>
<tr>
<td>5.14</td>
<td>Master Confidence Grid Formation</td>
<td>84</td>
</tr>
<tr>
<td>5.15</td>
<td>Potential Field Mask</td>
<td>86</td>
</tr>
<tr>
<td>5.16</td>
<td>Potential Field Map</td>
<td>87</td>
</tr>
<tr>
<td>5.17</td>
<td>Potential Field Path Plan Points</td>
<td>87</td>
</tr>
<tr>
<td>5.18</td>
<td>Path Arc Calculation</td>
<td>88</td>
</tr>
<tr>
<td>5.19</td>
<td>NEVEL’s Drive Loop</td>
<td>89</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

1.1 Definition of an Autonomous Robotic Vehicle

What exactly is an autonomous robotic vehicle? Webster’s Second College Edition New World Dictionary defines the words in this expression as follows. The term autonomous means “having self-government; functioning independently without control by others.” One definition of the word robot is “any mechanical device operated automatically to perform in a seemingly human way.” Finally, a vehicle is defined as “any device or contrivance capable of carrying or conveying persons or objects.” Thus, we may generally conclude that an autonomous robotic vehicle is a “device capable of movement based on independent, human-like decisions.” This definition infers other human characteristics necessary for decision making such as perception and reasoning.

Recent literature supports this concept of an autonomous robotic vehicle. Angeles (1997) presents the general concept of robotic devices as dynamic mechanical systems with the possibility of intelligence. Intelligence is described as the ability of the system to perceive, reason, make decisions, and act based on a high order goal. A high order goal, such as “map a planet’s terrain”, requires a much more complex system than do lower order goals, such as “move from point A to point B”. According to Angeles (1997), an intelligent robotic system uses sophisticated sensory systems to perceive an unstructured environment and then make decisions that mimic living systems. Meystel (1991) states that “autonomy” is defined by a system’s “ability to independently make intelligent decisions as the situation changes.” Meystel is careful to point out that there are varying levels of autonomy. A robot generally controlled by a human operator may be able to plan, control, and execute certain operations without
human intervention. It is the concept of “intelligence” that separates autonomous robotic systems from the teleoperated and programmable robots commonplace in today’s industrial settings. This thesis will focus on the development of a completely autonomous robotic vehicle.

1.2 Motivation

The vehicle presented in this thesis was directly motivated by a design project at Virginia Tech. The project culminates with participation in the Annual Unmanned Ground Vehicle Competition sponsored by the Association for Unmanned Vehicle Systems International (AUVSI). However, the possible uses of autonomous vehicles are obviously much broader. Smart highway systems draw upon autonomous vehicle research to make cars safer with the addition of driver assistance systems (Hennessey et al., 1995; Ganci et al., 1995). Robotic vehicles are being used for interplanetary exploration. Great distances cause communication lags that limit real-time teleoperation. Thus, vehicles that can perform obstacle avoidance and specimen collection autonomously are highly beneficial (Schilling and Jungius, 1995; Hayati et al., 1997). Military applications include reconnaissance and perimeter security (Meystel, 1991). As the world of production becomes increasingly competitive, the need for robotic systems capable of real-time decision making increases. Autonomous robotic vehicles and their underlying concepts can be applied to almost any situation where there is concern for human safety, or where speed, or tedium is an issue.

1.3 Technical Challenges

The technical challenges involved in the design and implementation of an autonomous robotic vehicle follow directly from Angeles’s (1997) definition of intelligence. The most obvious challenge is to design a system capable of performing the necessary action. A robot could be required to retrieve stock in a warehouse, perform security functions, or in this case, autonomously negotiate an outdoor obstacle course. Different applications may require different types of
mobile platforms or manipulators. Regardless of the application, the design must consider issues of environment, durability, reliability, complexity, size, and cost.

Once a proper platform is designed, the robot must be given the ability to perceive the world around it. This requires the selection and fusion of a variety of sensing instruments. The designer must decide what level of perception is necessary to accomplish a given task. The perception of a highway lane boundary, for example, could be accomplished using several different types of sensors. The designer must consider the importance of resolution, accuracy, reliability, and cost to the application. Consideration must also be given to the ability to combine multiple sensors and how this will affect the robot’s ability to reason and make decisions.

A robot’s ability to reason and make decisions focuses on the systems computing resources and algorithms. Ultimately, a robot is only as “intelligent” as the computer algorithms programmed by its creators. The robot’s algorithms must be capable of collecting and modifying sensor data to perceive the world. The assembled sensor data must then be interpreted according to the robot’s task or goal and used to generate some type of decision. Typically this decision involves some action carried out by the physical robotic system. The complexity of these algorithms is again dependent upon the robot’s application.

The greatest technical challenge is integrating the perception, reasoning, decision making, and action segments of the overall design. Sensor selection must be done concurrently with perception and decision making algorithms to ensure a robust and efficient system. The designer must also make sure that computer resources are capable of controlling the mechanical systems so that the action is properly carried out. The wisest approach is to simultaneously consider all the subsystems and their interaction. All of these technical challenges and possible solutions will be addressed in the following chapters.

1.4 Thesis Outline

This thesis describes the development of an autonomous robotic vehicle to compete in the Sixth Annual Unmanned Ground Vehicle Competition held at
Oakland University. The concepts presented, however, apply to the development of autonomous systems in general. Chapter 2 presents a survey of different types of robotic vehicles, sensors and sensor fusion, and navigation strategies. This covers the perception, reasoning, decision making, and action stages of the system. Chapter 3 will outline the design goals and constraints. Specific attention will be given to the requirements set forth by the Annual Unmanned Ground Competition. The experience gained by Virginia Tech’s Autonomous Vehicle Team, or AVT, during the past three years is also used to impose further design goals. Chapters 4 and 5 will present the proposed and detailed designs. The design and fabrication of the base vehicle, onboard sensors, and navigation strategy will be discussed in detail. Finally, Chapter 6 will present the results obtained during vehicle testing and at competition.